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Abstract

Among the recent work on designing algorithms for se-
lecting citizens’ assembly participants, one key property of
these algorithms has not yet been studied: their manipula-
bility. Strategic manipulation is a concern because these al-
gorithms must satisfy representation constraints according to
volunteers’ self-reported features; misreporting these features
could thereby increase a volunteer’s chance of being selected,
decrease someone else’s chance, and/or increase the expected
number of seats given to their group. Strikingly, we show that
Leximin — an algorithm that is widely used for its fairness —
is highly manipulable in this way. We then introduce a new
class of selection algorithms that use `p norms as objective
functions. We show that the manipulability of the `p-based
algorithm decreases in O(1/n1−1/p) as the number of vol-
unteers n grows, approaching the optimal rate of O(1/n) as
p → ∞. These theoretical results are confirmed via experi-
ments in eight real-world datasets.

1 Introduction
In a citizens’ assembly, a panel of randomly-chosen con-
stituents convenes to make a policy recommendation on a
political issue. Although citizens’ assembly participants are
not career politicians, their recommendations are informed
by an extensive process of learning from experts and de-
liberating with one another. As such, citizens’ assemblies
are appealing because they combine the goals of engag-
ing everyday citizens in democratic decision-making, while
also facilitating informed decisions. Citizens’ Assemblies
are now being used to make increasingly high-profile de-
cisions around the world (Participedia 2023); for example,
France recently ran a national-level assembly on the topic of
assisted dying, and its outcome is slated to affect policy on
palliative care (Bürgerrat 2023).

Because the participants of a citizens’ assembly represent
their entire underlying constituency, the process by which
they are selected is crucial to whether the policy recom-
mendation they produce is perceived as trustworthy. The
importance of this selection process has motivated a grow-
ing body of research on selection algorithms (Ebadian and
Micha 2023; Ebadian et al. 2022; Flanigan et al. 2020, 2021;
Flanigan, Kehne, and Procaccia 2021), which solve the fol-
lowing task: from among a pool of volunteers, randomly
sample a panel that is (at least approximately) descriptively

representative of the underlying population. This means that
if the population is 48% women, the panel should be approx-
imately 48% women. Because exact representation of all
identities cannot be achieved with a finite-size panel, practi-
tioners’ main goal is to achieve representation with respect
to a handful of key features, such as gender, age, geographic
location, education level, and opinion on the issue at hand.

The main algorithmic challenge in selecting descriptively
representative participants is self-selection bias: different
demographic groups agree to participate at vastly different
rates, so the pool of volunteers from which the panel is sam-
pled is demographically skewed compared to the underly-
ing population. Consequently, simple sampling techniques
do not produce the desired descriptive representation.

Existing work has circumvented the challenge of achiev-
ing representation to a large degree. The first selection al-
gorithms, developed by practitioners, were heuristics that
searched for representative panels, injecting randomness
wherever possible. More recent work has contributed algo-
rithms that not only find representative panels, but do so in
a way that achieves other desiderata simultaneously. For ex-
ample, Flanigan et al. (2021) presents a framework of algo-
rithms that are maximally fair to individual pool members:
that is, they make pool members’ probabilities of being se-
lected as equal as possible, subject to representation con-
straints. One algorithm within this framework, called Lex-
imin (Flanigan et al. 2021), is now widely used in practice.

Beyond the desiderata of representation and maximal fair-
ness, follow-up work has contributed methods for addition-
ally achieving transparency (Flanigan, Kehne, and Procac-
cia 2021). However, at the current frontier of research on
selection algorithms, a key desideratum remains yet un-
touched: their manipulability.

In this paper, we initiate the study of selection algorithms’
vulnerability to perhaps the most salient type of potential
manipulation: volunteers misreporting their features. With
Example 1.1, we now illustrate in detail why the selection
process, as it commonly works in practice, can permit — and
strongly incentivize — such manipulation.

Example 1.1. We want to select a panel of 10 people to
convene on climate policy. We care about descriptive repre-
sentation of one feature only: people’s level of concern about
climate change. This feature has two possible values: those
who are less concerned (20% of the population) and more



concerned (80% of the population). Thus, we will reserve 2
and 8 panel seats for these respective groups.
STAGE 1: RECRUITING THE POOL OF VOLUNTEERS. We
send out invitations to 1000 uniformly sampled households
in our constituency. In response, 100 people volunteer to par-
ticipate, but they are strongly self-selected: only 4 are truly
less concerned, and 96 of them are truly more concerned.1
In preparation for selection, we ask all 100 volunteers to re-
port which group they belong to. Among these volunteers,
suppose there is one strategic agent i who is truly more con-
cerned, but is willing to misreport their group membership
if it increases their chance of being on the panel.
STAGE 2: PANEL SELECTION. Given this pool of volunteers
and their self-reported group memberships, a selection algo-
rithm is then used to choose a panel. We assume nothing
about this algorithm except that it treats people in the same
group uniformly, and it produces a panel with 2 seats for less
concerned people and 8 seats for more concerned people.

It is not hard to see that, in this example, i benefits sig-
nificantly from misreporting their group membership. If i
truthfully reports they are more concerned, they will join a
group of 96 people for whom the panel has 8 seats, and thus
will be chosen with probability 8/96 ≈ 8%. If i reports that
they are less concerned, they will join a group of 5 people
for whom the panel has 2 seats, and will be chosen with
probability 2/5 = 40%. By misreporting that they are less
concerned, i can increase their selection probability by al-
most 32%. Moreover, with probability 40%, i will be given
a panel seat reserved for less concerned people, thereby giv-
ing the group of more concerned people an extra panel seat.

Example 1.1 illustrates why such manipulation is of prac-
tical concern: the nature of self-selection bias in this ex-
ample would be fairly easy for constituents to anticipate —
surely, people who care less about climate change will be
less likely to volunteer — making the optimal manipulation
public knowledge.2 Moreover, we cannot always prevent
manipulation through verification; here, people’s opinions
would be impossible to check. As citizens’ assemblies are
used for increasingly higher-profile decisions, the political
power associated with participating — and thus the incentive
to manipulate — will only increase. Example 1.1 also shows
a fundamental impossibility: when there is self-selection
bias, achieving descriptive representation necessitates giv-
ing different probabilities to different groups, thereby per-
mitting manipulability. In other words, no selection algo-
rithm can achieve representation while eliminating manip-
ulation incentives. This motivates our research question:

Research question: What aspects of the selection process
can we adjust in practice to limit agents’ incentives to

misreport their features?
Approach. We focus on two main aspects of the selection
process that can be changed in practice: the size of the pool
of volunteers n, and the choice of selection algorithm. The

1These numbers are based on a real-world panel selection task
(instance sf-e in our empirical analysis).

2More generally, there are clear patterns across real-world in-
stances of which groups tend to be most underrepresented among
volunteers (e.g., those with less education).

intuition for why increasing n could help is simple: as the
pool grows, there are more volunteers per available panel
seat. For the correct choice of selection algorithm, this could
permit the decrease of all volunteers’ selection probabilities,
thereby diluting the potential gains of manipulation.

Among selection algorithms, we consider only algorithms
that achieve maximal fairness, because per Example 1.1, ma-
nipulation incentives arise from inequality in selection prob-
abilities (thus, the goal of equalizing selection probabilities
is aligned with limiting manipulation). Specifically, we in-
troduce and study rounding-based selection algorithms — a
class of maximally fair algorithms that generalizes an algo-
rithm of Flanigan et al. (2020). As discussed further in Sec-
tion 2, rounding-based algorithms closely reflect those used
in practice, but enforce a slightly relaxed notion of represen-
tation.

Each rounding-based algorithm optimizes a different fair-
ness objective: a function measuring how fairly the chance to
participate is spread over volunteers. We study several such
functions: Leximin, the objective most commonly used in
real-world panel selection (Flanigan et al. 2021); Nash Wel-
fare, which has known fairness and transparency properties
and is available online for practical use (Flanigan, Kehne,
and Procaccia 2021); and all `p norms, which we newly in-
troduce to the citizens’ assembly setting.

Results and Contributions. (1) Manipulation model. Our
first contribution is to formally model three realistic manipu-
lation incentives in the assembly selection context: increas-
ing one’s own probability of selection, changing someone
else’s, and — as we saw in Example 1.1 — misappropriating
seats from other groups. (2) Impossibilities for existing
algorithms. We then show that, somewhat alarmingly, the
state-of-the-art objectives Leximin and Nash Welfare are ar-
bitrarily manipulable on multiple of these counts. Even as
n grows large, they permit agents to gain probability 1 by
misreporting, and they allow coalitions to misappropriate
a constant fraction of the panel seats. These lower bounds
give a key insight: fairness objectives are manipulable when
they permit some agents to receive very high selection prob-
abilities. (3) An optimal selection algorithm. Motivated
by this finding, we study `p norms, which heavily penal-
ize high probabilities due to their strong convexity. We show
that even when agents can costlessly misreport any vector
of features, the manipulability of the `p-norm declines in
n at a rate n−(1−1/p), a rate which holds for all three no-
tions of manipulability. We further show that any selection
algorithm must suffer manipulability at least Ω(1/n); as
p → ∞, our upper bound approaches this lower bound, im-
plying that the `∞ norm — the objective that minimizes the
maximum selection probability — achieves optimal conver-
gence. As a bonus, our analysis handles coalitions of size up
to Θ(n). (4) Empirical results. We complement these the-
oretical results with experiments in eight real-world panel
selection datasets. Our empirical results closely track our
theory, showing that Leximin and Nash Welfare suffer high
manipulability even as n grows, while the manipulability of
the `2 and `∞ norms declines quickly.



2 Model
2.1 Foundations of selection algorithms
Selection algorithms solve the panel selection task, where
the goal is to select a panel of k agents from the pool
of n agents. This panel must be descriptively representa-
tive with respect to a predefined set of features F , where
each feature f ∈ F takes on a value v ∈ Vf . For exam-
ple, the feature f = gender might have values Vgender =
{non-binary, female, male}. Descriptive representation is
generally required to hold for all feature-value pairs (f, v)
for f ∈ F, v ∈ Vf ; we summarize all such pairs as FV :=⋃
f∈F Vf . A representative panel includes a p(f,v) agents

with value v for feature f , where p(f,v) the fraction of the
underlying population with value v for feature f . Let these
population rates be p := (p(f,v)|(f, v) ∈ FV ).

An instance of the panel selection task is then defined
by a set of population rates p; a desired panel size k; and
the pool N , which is defined by all n agents’ true values
of each feature. To define these values, we let each fea-
ture operate as a function f : [n] → Vf , so f(i) is i’s
value for feature f . These values are summarized in i’s fea-
ture vector w(i) = (f(i)|f ∈ F ). The pool of volunteers
N := (w(i)|i ∈ [n]) is then an n-tuple containing all agents’
feature vectors. We letW :=

∏
f∈F Vf be the collection of

all possible feature-vectors (i.e., all possible intersections of
feature-value pairs). A generic feature vector is w ∈ W . We
will often reason only about fractional composition of a pool
N , called ν(N). This vector is indexed by feature-vector,
with w-th entry νw(N) := |{i ∈ [n] : w(i) = w}|/|N |
representing the fraction of the pool with vector w.

In practice, organizers must rely on agents to report their
feature vectors. Agent i’s reported feature vector is denoted
w̃(i) ∈ W; in general, we will use tilde ·̃ throughout the
paper to distinguish reported values from true values. The
reported pool is then denoted as Ñ = (w̃(i)|i ∈ [n]). In an
instance p, k,N , a selection algorithm A actually receives
as input p, k, Ñ , and must map it to a panel K ⊆ Ñ .

In the next subsection, we will formally define three mo-
tives with which an agent might misreport their feature vec-
tor. All these motives revolve around controlling a particular
resource: selection probability. Agent i’s selection probabil-
ity is P[i ∈ K], the probability i is chosen for the panel.
We define πAi (p, k, Ñ) to be the selection probability given
to agent i by algorithm A on input p, k, Ñ . Accordingly,
the vector of agents’ selection probabilities is πA(p, k, Ñ).
Since p and k are taken to be known by the algorithm, we
simply write πA(Ñ). A generic vector of selection probabil-
ities is π. Note that there are k available seats for n people,
so the average selection probability over agents must be k/n.

2.2 Manipulation of selection algorithms
In the game we study, we permit all agents to costlessly mis-
report any feature vector in W . We assume that agents re-
port their feature vector w̃(i) with knowledge of the entire
instance p, k,N , plus full access to the selection algorithm.3

3It is realistic to assume agents know p and k, and can access
the selection algorithm: p is found in census data, and for trans-

While the assumption that agents exactly know the true pool
N is slightly adversarial, our study of simple manipulation
heuristics in Section 5 will shed light the potential for ma-
nipulation using less detailed information about the pool.

We do not commit to a specific utility function for agents,
because they might manipulate with a variety of different
goals. Instead, we define the three measures of manipulabil-
ity below, each corresponding to a different motive: the in-
ternal manipulability MANIPint captures how much a coali-
tion can increase the selection probability of its members;
the external manipulability MANIPext captures how much
a coalition can harm a non-member; and the composition
manipulability MANIPcomp captures how many seats (in ex-
pectation) a coalition can misappropriate from any feature-
value group. We denote a coalition as C, and we let N−C
denote the pool with the feature vectors of i ∈ C re-
moved. In instance p, k,N , the manipulability of A by any
coalition of size c is defined, per notion, as follows, where
> := maxC⊆[n],|C|=c maxw̃∈W|C| is shorthand for tak-
ing the worst possible coalition of size c and worst possible
strategic reports of its members.

MANIPint(N,A, c) := > max
i∈C

πAi (N−C ∪ w̃)− πAi (N),

MANIPext(N,A, c) := > max
i/∈C

πAi (N−C ∪ w̃)− πAi (N),

MANIPcomp(N,A, c) :=

> max
(f,v)∈FV

∑
i:f(i)=v

πAi (N−C ∪ w̃)−
∑

i:f(i)=v

πAi (N).

2.3 Rounding-based selection algorithms
We study the manipulability of a class of selection algo-
rithms which we call rounding-based selection algorithms.
Each rounding-based algorithm is specified by a convex
function g : [0, 1]n → R; we will refer to the algorithm
defined by function g simply as g. Algorithm g proceeds in
two steps: Step 1 computes selection probabilities that mini-
mize g, subject to some constraints; then, Step 2 dependently
rounds these probabilities to produce a final panel. Since se-
lection probability is the resource sought by manipulating
agents — and the selection probabilities are fully determined
in Step 1 — only the Step 1 will be of interest in this paper.
Step 1. Find g-optimal selection probabilities. Given in-
stance p, k,N , in this step the algorithm optimizes g over
the polytope R(N), defined such that π ∈ R(N) ⇐⇒ π
satisfies the following constraints:∑

i∈N :f(i)=v

πi = kp(f,v) for all (f, v) ∈ FV (C1)

∑
i∈N

πi = k (C2)

π ∈ [0, 1]n (C3)

parency, k might be public and the selection algorithm would be
open-sourced. Assuming agents know N is somewhat adversarial,
because in practice, the agents report their features simultaneously;
however, this assumption reflects the concern that, by comparing
census data and the compositions of past pools, agents could infer
who tends to participate, and thus the likely composition of N .



(C1) requires ex-ante representation for all feature-value
pairs; (C2) requires that the panel is the correct size in ex-
pectation (required for sub-routine 2), and (C3) requires π to
contain valid probabilities. Formally, in step 1 the algorithm
g solves the following convex program:

min
π

g(π) s.t. π ∈ R(N) (OPT-PROB)

Note that without loss of generality, we can assume that the
solution of this convex program assigns the same probability
to all agents with the same feature vector, since as any feasi-
ble solution can be transformed into such a solution, per the
definition of R(N). We will consider only such solutions
throughout the paper.
Step 2: Randomized-rounding. This step intakes the selec-
tion probabilities found in the previous step, called πg , and
samples a panel K of size k using the discrepancy-based
rounding procedure of Flanigan et al. (2020). For our
purposes, the key property of this rounding procedure is
that it preserves the selection probabilities πg; we defer the
details of this procedure to Appendix A.1.
Specific choices of g. We instantiate the randomized-
rounding algorithms above with several convex functions
g— all which, when minimized, tend to make selection
probabilities more equal. We analyze two choices of g that
serve as benchmarks: Nash Welfare, and Leximin. Nash Wel-
fare is the geometric mean of selection probabilities:

nash(π) := −
∏
i∈[n]

πi.

Leximin is not itself strictly a function, but a refinement of
the objective Maximin, which maximizes the minimum se-
lection probability given to any agent:

maximin(π) := −min
i∈[n]

πi.

The Leximin-optimal solution is computed iteratively: opti-
mize maximin, fix the minimum entry of that solution as a
lower bound on any entry of π, then maximize the second-
lowest entry; repeat until all entries are fixed.

Finally, we study all `p norms for p > 1, which measure
the distance between π and the vector of exactly equal se-
lection probabilities (k/n, k/n, . . . , k/n):

`p(π) := ‖π − (k/n, . . . , k/n)‖pp.
Connections to existing algorithms. With rounding-based
algorithms defined, we can now compare them to existing
selection algorithms. The most closely-related algorithm is
that of Flanigan et al. (2020). Their algorithm computes se-
lection probabilities within R as in our in Step 1, and then
rounds them via the same procedure as in our Step 2. The
main difference is that their algorithm manually sets selec-
tion probabilities to specific values in Step 1 in a way that
ends up satisfying the constraints, while algorithm g within
our class sets them by optimizing the function g.

Slightly further afield are the most widely-implemented
maximally fair algorithms, as introduced by Flanigan et al.
(2021). These algorithms differ from ours only in that they
enforce representation slightly differently: instead of ex ante
representation, they require the satisfaction of hard upper

and lower demographic quotas ex post (e.g., quotas might
require that a panel of 10 people contains between 4 and
6 women). As we show in Proposition A.2, our algorithms
are formally equivalent to a continuous relaxation of these
quota-based algorithms where agents are divisible. More-
over, our rounding-based algorithms do, in fact, achieve a
relaxed version of these ex-post quotas: they are guaranteed
to produce a panel containing within ±|F | of kp(f,v) agents
with each value v of each feature f (Lemma 9, Flanigan et al.
(2020)). This panel is found via a rounding scheme based on
a discrepancy theorem due to Beck and Fiala (1981).

3 Leximin and Nash are Highly Manipulable
We begin by analyzing the two objectives most closely tied
to practice. Strikingly, Theorem 3.1 shows that both leximin
and nash are extremely manipulable: using either algorithm,
an individual agent can gain selection probability 1 by mis-
reporting, and a coalition can deterministically misappropri-
ate (approaching) half of all panel seats for their own group.
The proof of this theorem is found in Appendix B.1; we give
a proof sketch below.

Theorem 3.1. For an arbitrarily large n and for all c ∈
[1, k/2), there exists an instance p, k,N , |N | = n such that

MANIPint(N, leximin, 1) = 1 and
MANIPint(N, nash, 1) = 1; moreover,

MANIPcomp(N, leximin, c) = c and
MANIPcomp(N, nash, c) = c.

Proof sketch. Fix a c ∈ [1, k/2). All claims are proven
by a single instance p, k,N with features f1, f2 that take
on binary values {0, 1} (so the possible feature vectors are
00, 01, 10, 11). In this instance, we let the population rates
of all feature-values be balanced: pf1,0 = pf1,1 = pf2,0 =
pf2,1 = 1/2. We construct N with the following fractional
composition, where ν∗ should be thought of as a quantity
shrinking in c: ν00(N) = ν11(N) = ν∗, ν10(N) = 1− 2ν∗,
and ν01(N) = 0. We let this pool have some size |N | = n ≥
k2, such that its fractional composition can be realized.

First, observe that in this instance, all agents with vec-
tor 10 must receive zero selection probability due to the
constraints: giving them any probability would induce a
constraint-violating imbalance in the probability given to
agents with f1 = 0 versus f2 = 0, which cannot be re-
balanced because the complementary vector 01 does not ex-
ist in N . This suggests a manipulation strategy: an agent
with 10 could misreport 01, thereby permitting greater fair-
ness by allowing agents with 10 to receive some probability.

Let i with w(i) = 10, and define Ñ := N−i ∪ {01} as
the pool resulting from i using the proposed strategy. In in-
stance p, k, Ñ , agents with 10 can receive probability; the
catch is that, for every unit of probability given to such an
agent, a unit must also be given to i, meaning that i must
receive |N |/2 times the probability of any agent with 10.
The key observation is that both leximin and nash prioritize
ensuring the minimum probability is not too small, with lit-
tle consideration for what happens to the highest probability.
For this reason, both algorithms give i selection probability



1 in the instance p, k, Ñ . i has gained probability 1 by misre-
porting, implying the bounds on MANIPint(N, leximin, 1) and
MANIPint(N, nash, 1). This argument extends to an entire
coalition of c < k/2 such agents, implying the bounds on
MANIPcomp(N, leximin, c) and MANIPcomp(N, nash, c).

Takeaway: strongly convex objectives. The key takeaway
from this proof is that objectives that do not penalize high
selection probabilities can be highly manipulable. A natu-
ral class of objectives that do penalize high probabilities are
strongly convex objectives — we formalize this intuition in
Proposition B.1. This insight suggests that in future study
of selection algorithms, it may be desirable to focus on
such objectives. This finding also motivates our focus on `p
norms — a natural class of strongly-convex objectives.

4 `p-Norms Approach Optimal
Manipulability as p→∞

We now present upper-bounds on all three measures of ma-
nipulability for all rounding-based algorithms `p with p > 1.
These upper bounds will hold for any instance whose pool
satisfies Assumption 4.1, which conceptually requires that
the pool has a minimal level of feature vector richness.

Assumption 4.1 (Pool richness). N contains some set of
feature-vectorsW∗ ⊆ W such that

1. there is a constant κ∗ > 0 such that νw(N) ≥ κ∗ + k/n
for all w ∈ W∗, and

2. R(N) contains a solution π∗ such that πi = 0 for all
i : w(i) /∈ W∗.

This assumption is likely to hold in practice; in fact, due to
how the pool is sampled, every feature-vector group’s pres-
ence in the pool should grow approximately linearly in n.
We expand on this in Appendix C.1. Also, note that the pool
used to prove Theorem 3.1 satisfies Assumption 4.1 (with
W∗ = {00, 11}), thus demonstrating a genuine gap between
the manipulability of all `p norms and leximin, nash.

Theorem 4.2. Let p > 1, and let N be any pool of size n
satisfying Assumption 4.1 withW∗, κ∗, π∗. Let κ ∈ (0, κ∗);
then, for any coalition size c ≤ κn, we have that

MANIPint(N, `p, c) ∈ O
(
k/n1−1/p

)
,

MANIPext(N, `p, c) ∈ O
(
k/n1−1/p

)
, and

MANIPcomp(N, `p, c) ∈ O
(
ck/n1−1/p

)
.

Proof. Fix a pool N with W∗, κ∗, π∗, as in the theorem
statement. Fix any coalition C ⊆ N of size c ≤ κn. Let
Ñ := N−C ∪ {w̃(i)|i ∈ C} be the manipulated pool.
For convenience, we will again work with feature-vector-
indexed objects. We will again use νw(N) as the frequency
of w in N . We also define tw(π) :

∑
i:w(i)=w πi as the total

probability π gives to agents with vector w. Let the vector
of these totals be t(π) = (tw(π)|w ∈ W). We can now
reformulate the constraints defining R(N) in terms of the

variable t: let T (N) ⊆ R|W| such that t(π) ∈ T (N) iff∑
w:wf=v

tw(π) = kp(f,v) for all (f, v) ∈ FV (C1’)

∑
w

tw(π) = k (C2’)

tw(π)

nνw(N)
∈ [0, 1] for all w ∈ W (C3’)

Let π∗ ∈ R(N) be the feasible solution assumed to exist by
Assumption 4.1. Then, construct the vector π̃ as follows:

π̃i = tw(i)(π
∗) / nνw(i)(Ñ) for all i ∈ N.

What this definition effectively does is maintains the total
probability assigned to each vector group from π∗ to π̃,
spreading it over the potentially changing number of voters
with that vector from pool N to Ñ . Formalizing this:
Claim 1: For all w ∈ W , tw(π∗) = tw(π̃). Proof:

tw(π̃) =
∑

i:w(i)=w

π̃i =
∑

i:w(i)=w

tw(π∗)

nνw(Ñ)
= tw(π∗).

Claim 2: π̃ ∈ R(N). Proof: We prove this by equivalently
showing that t(π̃) ∈ T (Ñ). The satisfaction of constraints
C1’ and C2’ follow from Claim 1. Moreover, by definition
tw(π̃)

nνw(Ñ)
≥ 0 for all w. Then, to show C3’ it just remains to

show that tw(π̃)

nνw(Ñ)
≤ 1 for all w:

tw(π̃)

nνw(Ñ)
=

tw(π∗)

nνw(Ñ)
≤ tw(π∗)

n(νw(N)− κ)

≤ tw(π∗)

n(κ∗ + k/n− κ)
≤ k

k + n(κ∗ − κ)
≤ 1.

Now, we will show that the vectors of probabilities π∗, π̃
have maximum entry on the order 1/n:
Claim 3: ‖π∗‖∞ ≤ k/κ∗n and ‖π̃‖∞ ≤ k/(κ∗−κ)n. Proof:
For all i with w(i) /∈ W∗, π∗i = π̃i = 0 by definition. For i
with w(i) ∈ W∗, we have that

π∗i =
tw(π∗)

nνw(N)
≤ k

nκ∗
and π̃i =

tw(π∗)

nνw(Ñ)
≤ k

n(κ∗ − κ)
.

Now, we relate the infinity-norms of any feasible solution
and the `p-optimal solution of OPT-PROB:
Claim 4: For any π ∈ R(N), ‖π`p(N)‖∞ ≤ n1/p‖π‖∞.
Proof: By the optimality of π`p(N), we have that
`p(π

`p(N)) ≤ `p(π(N)). Then, using properties of norms,
and the triangle inequality (twice), we obtain that

‖π`p(N)‖∞ ≤ `p(π`p(N)) + ‖k/n1‖p ≤ `p(π) + ‖k/n1‖p
≤ ‖π‖p + 2‖k/n1‖p ≤ n1/p‖π‖∞ + 2kn−

p−1
p .

Using that π∗ ∈ R(N), π̃ ∈ R(Ñ), Claims 3 and 4 together
imply that ‖π`p(N)‖∞ ≤ k/(κ∗ n1−1/p) + 2k/n1−1/p and
likewise, ‖π`p(Ñ)‖∞ ≤ k/((κ∗−κ)n1−1/p)+2k/n1−1/p.
Using that the entries of all π are nonnegative, it follows that

‖π`p(Ñ)− π`p(N)‖∞ ≤
(

1

κ∗ − κ + 2

)
k

n1−1/p
. (1)



We’ve now shown an upper bound on how many any i’s
probability changes between pool N and pool Ñ . This im-
mediately implies the upper bounds on MANIPint(N, `p, c)

and MANIPext(N, `p, c). Our upper bound on ‖π`p(Ñ)‖∞
further implies that post-defection, the members of the coali-
tion can have at most O(ck/n1−1/p) total selection proba-
bility, giving our upper bound on MANIPcomp(N, `p, c).

We now show a lower bound that applies to any rounding-
based algorithm. It shows that up to constants, the manipu-
lability of `∞ decreases at the optimal rate in n.
Theorem 4.3. There is some η > 0 such that there exist
pools N of arbitrarily large size n which, for any coalition
size c ≤ 5n/64 and all objectives g, satisfy
MANIPint(N, g, c) ≥ η k/n, MANIPext(N, g, c) ≥ η k/n,

MANIPcomp(N, g, c) ≥ η ck/n.
The same pools also satisfy Assumption 4.1.
The proof is in Appendix C.2 and relies on an example ex-
actly like Example 1.1: there is one binary feature, where v1
is severely underrepresented in the pool. The bounds arise
from agents with v0 misreporting v1.

5 Manipulability of Real-World Instances
Now we compare the manipulability of leximin, nash, `2 and
`∞ in eight real-world panel selection instances. Instance
details are provided in Appendix D.1. We present here two
representative instances, called sf(a) and hd, and defer the
rest to Appendix D. The datasets were obtained from groups
of assembly organizers based in the UK and US, respec-
tively. Each real-world instance consists of p, k,N . To study
how manipulability changes as we increase the pool size,
we simply copy the pool, leaving p and k fixed. In each in-
stance, we copy the pool until n ≥ 100k, as practitioners
often specify their target pool size in multiples of k.

We will test our selection algorithms against an individual
manipulator — that is, we measure how much selection
probability any agent can gain by misreporting their
feature vector. The most powerful individual manipulator
could gain MANIPint(N,A, 1) probability against A— the
quantity to which our theoretical bounds apply. Given the
computational difficulty of calculating the optimal manipu-
lation (each agent has |W| ∈ Ω(2|F |) possible strategies),
we test our algorithms against three practically-motivated
heuristic strategies: OPT-1, MU, and HP, defined below.
The results are summarized in Figure 1.
OPT-1: Optimal misreport of one feature. An agent play-
ing strategy OPT-1 reports the feature vector that benefits
them most, subject to misreporting their value for at most
one feature. This strategy, in practice, might correspond to
a practical setting in which only a few features cannot be
validated. When comparing across algorithms, we think of
OPT-1 as a proxy for the optimal individual manipulation.
As column 1 of Figure 1 shows, the manipulability of `2 and
`∞ against OPT-1 declines quickly in n, while leximin and
nash remain arbitrarily susceptible to manipulation. The
fact that leximin and nash are so manipulable even when
agents are willing to misreport only one feature was not

implied by our lower bounds, and shows the findings in our
theoretical lower bounds are of practical relevance.
MU: Most underrepresented. Let η(f,v)(N) := |{i|f(i) =
v}|/|N | be the fraction of agents with value v for feature f .
An agent playing strategy MU reports the vector containing
the most underrepresented value of each feature f — that is,
w̃f := arg maxv∈Vf

p(f,v)/η(f,v)(N). Again, leximin and nash
are arbitrarily manipulable against MU, even for large n.
The vulnerability of leximin and nash here is of especially
high practical concern, because the MU manipulation
strategy is perhaps the most likely to be used in practice by
less sophisticated manipulators: it is intuitive and requires
only ordinal information about (the only O(|F |) many)
feature-value frequencies and no access to the algorithm
(in contrast, OPT-1 and HP require algorithm access and
information about the pool’s vector-level composition).
HP: Highest-Probability. Another reasonable heuristic a
manipulator i might use would be to report the vector w̃ that
receives the highest selection probability in the true pool; we
call this heuristic HP. That this strategy’s efficacy declines
in n intuitively makes sense: misreporting a vector that is al-
ready in the pool means joining a vector group whose size
is growing linearly in n (at least in these experiments, where
we are duplicating N ). This intuition alludes to the insight
that the most problematic misreports for suboptimal algo-
rithms are those of vectors that do not already exist in the
pool — an intuition supported by both the proof of our lower
bound in Theorem 3.1, and the fact that the most underrepre-
sented vector (targeted by the much more effective strategy
MU) is not in the original pool of any instance we study.

5.1 Extension: manipulability and selection bias
While n is much easier to change in practice than the level
of self-selection bias (SSB), the SSB could be decreased by
a more targeted recruitment process, motivating our study of
this would impact the manipulability. We introduce a mea-
sure of SSB in an instance, which roughly captures how
severely the algorithm must skew selection probabilities to
satisfy the constraints:

∆p,k,N := max
(f,v)∈FV

p(f,v)

η(f,v)(N)
− min

(f,v)∈FV

p(f,v)

η(f,v)(N)

Figure 2(a) shows that this measure of SSB is highly pre-
dictive of manipulability: across instances, the manipulation
gain of OPT-1 (scaled by k/n, for standardization) against
`∞ corresponds closely with instances’ ∆p,k,N values, as
listed in the figure legend. Proceeding with this measure, we
evaluate the impact of decreasing it in two ways. First, in
Figure 2(b), we decrease the SSB smoothly by interpolating
between the original poolN and the “nearest” (by Euclidean
distance) pool N ′ with ∆p,k,N ′ = 0. Second, in Figure 2(c),
we decrease the SSB by successively dropping features from
the instance in decreasing order of their feature-level SSB,
defined as ∆p,k,N restricted to the values of a given feature.
Using either approach, in sf(a), the manipulability of all al-
gorithms except leximin against OPT-1 drops quickly, while
leximin remains manipulable until extremely low levels of
SSB are reached. We defer the details of these methods, plus
results for the remaining instances, to Appendix D.5.
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Figure 1: Rounding-based algorithms leximin, nash, `2, and `∞ versus each manipulation strategy in instances sf(a) and hd.
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Figure 2: The impact of self-selection bias on the manipulability of leximin, nash, `2 and `∞ by an agent playing OPT-1 strategy.

6 Discussion
Our work illuminates a tradeoff between two goals: ensuring
that no one gets too little selection probability (as pursued in
the related work (Flanigan et al. 2021)), and ensuring that
no one gets too much probability (which we show is impor-
tant for limiting manipulation incentives). leximin and nash
prioritize the first goal but, as we show, perform poorly on
the second. In contrast, we show that `p norms can be opti-
mal in regards to the second goal, but they perform poorly
on the first: we find that both `2 and `∞ give at least one
agent zero probability in all eight instances we study (see
Appendix D.7). This begs the question: is there an objective
that both prevents high probabilities (thereby limiting ma-
nipulability) as well as low probabilities? An objective with
optimal dependency on n for both desiderata at once would
give all agents Θ(1/n) probability.4

Another first-order technical extension of this work would
be to repeat this analysis within quota-based algorithms, as
they implement the notion of representation most commonly
used (Flanigan et al. 2021). Because the separation between
leximin, nash versus `p norms is due to fundamental proper-
ties of these objectives, we expect them to exhibit roughly
similar behavior in quota-based algorithms. However, the
combinatorial structure of quotas may make quota-based al-
gorithms much more manipulable in the worst case.

4Θ(1/n) is the optimal rate at which manipulability can decline
(Theorem 4.3); because any algorithm must divide k probability
over n people, the minimum probability can be at most Θ(1/n).

Even without this extension to quota-based algorithms,
our work raises some practical insights. First, it suggests that
in general, algorithms permitting high selection probabili-
ties come with risks of manipulability — a property that can
be tested in any selection algorithm, maximally fair or not.
If one does maximize a carefully chosen fairness objective,
our work reveals practicable strategies for limiting manipu-
lation incentives: decreasing the SSB (even simply by drop-
ping features that one expects to be highly self-selected), or
recruiting a larger pool. Based on our empirical results, even
doubling the pool sizes currently used in practice would sub-
stantially decrease manipulability.

Beyond the application of assembly selection, our prob-
lem is conceptually reminiscent of strategic classification,
in which agents may misreport their features to increase
their probability of receiving a desirable prediction from a
machine-learned classifier (Hardt et al. 2016; Dong et al.
2018; Chen, Liu, and Podimata 2020; Ahmadi et al. 2021).
Within the strategic classification framework, we can view
a selection algorithm as a constrained classifier: one which
classifies agents as either on or off the panel with some prob-
ability based on their features, while satisfying demographic
representation constraints on who receives a positive clas-
sification. While some existing work is tangentially related
(Liu, Garg, and Borgs 2022), to our knowledge this precise
problem has not been studied in the strategic classification
literature. Our notions of manipulability, and our technical
results on the stability of our convex program, may be of
interest for this domain.
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A Supplemental materials from Section 2
A.1 Details of randomized rounding step of rounding-based algorithms
Inputs: The randomized rounding task takes two inputs:

– a vector of marginal probabilities, π ∈ [0, 1]n such that
∑
i∈[n] πi = k, and

– an |FV | + 1 × n matrix H , which can be seen as the binary matrix defining the adding up constraints in OPT-PROB.
That is, each column of H corresponds to an agent, and each row (except the last) corresponds to a different feature-value
(f, v) ∈ FV . The ith column has 1s in rows corresponding to feature-values possessed by i, and 0s elsewhere. The last row
corresponds to the adding up constraints, and so contains a 1 in every column.

Task: The goal is to round the entries of π into a vector π̃ ∈ {0, 1}n such that the three criteria below are satisfied. This
rounding procedure will be randomized, so π̃ is a random variable. Conceptually, π̃ will encode the selected panel K, where
π̃i = 1 ⇐⇒ i ∈ K.

– The adding up constraint is deterministically preserved:∑
i∈[n]

π̃i = k with probability 1

– The representation constraints satisfied by the original selection probabilities are deterministically satisfied within a relax-
ation of |F |: ∑

i:f(i)=v

π̃i ∈
∑

i:f(i)=v

πi ± |F | for all (f, v) ∈ FV with probability 1

– The selection probabilities in π are preserved:

E[π̃i] = πi for all i ∈ [n]

Algorithm (RANDOMIZED-ROUND): This rounding algorithm is exactly the algorithm used to prove Lemma 3 in Flanigan
et al. (2020). We outline their key arguments here, rephrased in our notation.

Lemma A.1 (Lemma 9 in (Flanigan et al. 2020)). Let (πi)i∈[n] be any collection of variables in [0, 1] such that
∑
i∈[n] πi = k.

Then, we can efficiently compute a deterministic 0/1 rounding (π̃i)i∈[n] such that
∑
i∈[n] π̃i = k and such that, for each

feature-value pair (f, v), ∑
i:f(i)=v

π̃i ∈
∑

i:f(i)=v

πi ± |F |.

The proof of this lemma is based on discrepancy theorem by Beck and Fiala (1981), and crucially relies on the fact the
underlying matrix H is relatively sparse: that is, each agent i has only |F |+ 1 1s in their column of the H matrix.

The above lemma implies a deterministic rounding procedure satisfying only criteria 1 and 2 above. To transform this de-
terministic rounding procedure into a randomized rounding procedure satisfying criteria 3, as do Flanigan et al., we can apply
Theorem 1.2 from (Bansal 2019), which does exactly the needed transformation. We outsource the (relatively straightforward)
details of applying this theorem in our setting to Lemma 3 in Flanigan et al. (2020).

A.2 Relationship between rounding-based and quota-based algorithms
Conceptually, OPT-PROB is equivalent to the relaxation of quota-based algorithms in which all agents are treated as divisible
(i.e., a panel can contain fractional agents). We formalize this here now, defining all relevant programs and relaxations, and then
proving the equivalence in Proposition A.2.

Definition of quota-based algorithms: OPT-QUOTA. To begin, we first formally specify the optimization solved by a quota-
based algorithm, as used in practice and studied in Flanigan et al. (2021). At a high level, these algorithms differ from Equa-
tion (OPT-PROB) by requiring representation in a different way: they impose upper and lower quotas on all (f, v), which
impose some tolerance of error around each p(f,v) · k that must satisfied deterministically by the chosen panel K. Formally, for
all (f, v) ∈ FV , a lower quota is `(f,v), an upper quota is u(f,v), and the chosen panelK is sampled from the panel distribution
ρ resulting from the optimization program below. We let K be the collection of all feasible panels, that is, all subsets of [n]
satisfying the following two constraints:

K :=
{
K : |K| = k ∧

∑
i:f(i)=v

1(i ∈ K) ∈
[
`(f,v), u(f,v)

]
for all (f, v) ∈ FV

}
.



Implicitly, the panel distribution ρ implies selection probabilities π: πi is equal to the probability of choosing any panel con-
taining i, as defined by p. We encode this constraint in the optimization problem below:

min
π∈[0,1]n, p∈[0,1]|K|

g(π) s.t.
∑
K∈K

ρK = 1 ∧ πi =
∑
K∈K

ρK · 1(i ∈ K) for all i ∈ [n] (OPT-QUOTA)

Continuous relaxation of quota-based algorithms: OPT-QUOTA-CONTINUOUS.
Now, we define a version of OPT-QUOTA in which individuals are treated as divisible. Then, a panel X ∈ [0, 1]n is a vector
of length n, whose i-th entry xi specifies the fraction of agent i included in panel X . Then, the set of feasible panels is the
following, uncountable infinite set:

X :=
{
X :

∑
i∈[n]

xi = k ∧
∑

i:f(i)=v

xi ∈
[
`(f,v), u(f,v)

]
for all (f, v) ∈ FV

}
.

Then, for variables π and panel density function ρ, we optimize

min
π∈[0,1]n, ρ

g(π) s.t.
∫
X∈X

ρXdX = 1 ∧ πi =

∫
X∈X

ρX xidX for all i ∈ [n] (OPT-QUOTA-CONTINUOUS)

Generalized version of rounding-based algorithms: OPT-PROB-RANGE.
Here, we define a slightly generalized version of OPT-PROB, in which the representation targets are replaced with ranges (where
we should think of this range encompassing the exact representation target in OPT-PROB, so kp(f,v) ∈ [`(f,v), u(f,v)]).

min
π∈[0,1]n

g(π) s.t.
∑

i:f(i)=v

πi ∈ [`(f,v), u(f,v)] for all (f, v) ∈ FV ∧
∑
i∈[n]

πi = k (OPT-PROB-RANGE)

Formal equivalence of OPT-PROB-RANGE and OPT-QUOTA-CONTINUOUS. Conceptually, what this shows is that for any
quotas `(f,v),u(f,v)

imposed in quota-based algorithms, maximizing our fairness objective while treating people as divisible is
equivalent — from the perspective of selection probabilities — to solving our rounding-based optimization problem with the
same representation target ranges. To realize exactly OPT-PROB, one could run a quota-based algorithm with divisible agents
and `(f,v) = u(f,v) = kp(f,v).
Proposition A.2. π is feasible in OPT-PROB-RANGE ⇐⇒ there exists a panel density function ρ over X which realizes π in
OPT-QUOTA-CONTINUOUS.

Proof. (Forward direction): π is feasible in OPT-PROB =⇒ there exists a panel density function ρ over X which realizes π:
Fix a feasible π. Define a panel X∗ such that x∗i = πi for all i ∈ [n]. By the fact that π satisfies the constraints in OPT-PROB-

RANGE, it follows immediately that X∗ ∈ X . Place all the mass in ρ on X∗, so ρX∗ = 1 and ρX = 0 for all X ∈ X \ {X∗}.
Then, by definition, π is realized by this ρ, because for all i ∈ [n],

πi =

∫
X∈X

ρXxidX = xi.

(Reverse direction): ρ is a valid density function over X and implies π =⇒ π is feasible in OPT-PROB-RANGE.
Fix a valid ρ and let it imply π. Then, we can confirm that π satisfies the constraints of OPT-PROB:∑

i∈[n]

πi =
∑
i∈[n]

∫
X∈X

ρXxidX =

∫
X∈X

ρX
∑
i∈[n]

xidX =

∫
X∈X

ρXkdX = k.

For any (f, v) ∈ FV , let
∑
i:f(i)=v xi = r(f,v).∑

i:f(i)=v

πi =
∑

i:f(i)=v

∫
X∈X

ρXxidX =

∫
X∈X

ρX
∑

i:f(i)=v

xidX =

∫
X∈X

ρXr(f,v)dX

∈
[
`(f,v), u(f,v)

]
.



B Supplemental materials from Section 3
B.1 Proof of Theorem 3.1
Proof. This result is most naturally proven using feature vector-indexed analogs of our standard agent-indexed objects, so we
define them now: we use νw(N) := |{i : i ∈ [n], w(i) = w}|/|N | to denote the fraction of the poolN containing feature vector
w, with ν(N) = (νw|w ∈ W). Noting that all reasonable objectives (including those considered here) will give all agents with
the same vector the same selection probability, we will use qw(N) to denote the selection probability given to each individual
agent with vector w, i.e., for all i ∈ N : w(i) = w, qw(N) = πi. We summarize these selection probabilities in the vector
q(N).

Reformulation of optimization problem. We reformulate our optimization problem in terms of the variables qw here, for
both objectives. First our feasible set of values of qw|w ∈ W , call itQ, is defined by the following constraints, analogs of those
definingR: q ∈ Q ⇐⇒ q satisfies∑

w:wf=v

νw(N)qw(N) = p(f,v) · k/n for all (f, v) ∈ FV ∧
∑
w

νw(N)qw(N) = k/n ∧ q(N) ∈ [0, 1]|W|. (2)

Now, to defining our full optimization problems: first, recalling that leximin is just a refinement of maximin,

maximin(p, k,N) : max
q∈[0,1]WN

min
w∈WN

qw(N) s.t. q ∈ Q.

For nash, we equivalently analyze the log of the geometric mean, whose optimizer is the same as that of the geometric mean:

nash(p, k,N) : min
q∈[0,1]WN

∑
w∈WN

−νw(N) log(qw(N)) s.t. q ∈ Q.

Instance. Fix a δ ∈ [1, k/2). All four claims will be proven via the same class of instances (parameterized by δ), which has
two features F = {f1, f2} with binary values in {0, 1}, and as such, W contains the feature vectors 00, 01, 10, 11. Now, to
define this instance p, k,N : let the population rates be pf1,0 = pf2,0 = 1/2. Let k ≥ 2. Fix a pool N of size n ≥ k2 where n is
a multiple of both δ/(2k) and 1−δ/k, with the following composition: ν00 = ν11 = ν∗ = δ/(2k), ν10 = 1−2ν∗, and ν01 = 0.

Optimal selection probabilities in instance (with true pool). Now, we characterize the leximin and nash-optimal selection
probabilities in this instance with the true pool. They are simple, because they are essentially determined by the constraints:
notice that for any n, the constraints require q10(N) = 0, because any probability mass added to ν(10) will induce imbalance
in the amount of probability given to f1 = 0 versus f2 = 0, a violation of the constraints that ρf1=0 = ρf2=0 = 1/2 that
cannot be counteracted because the complementary vector (01) does not exist in the pool. Also, because vectors 00 and 11
are completely symmetric in the instance, they must receive identical selection probabilities. Thus, q00(N) = q11(N); by the
adding up constraint, we have that ν∗q00(N) + ν∗q11(N) = k/n, implying that q00(N) = q11(N) = 1/(2ν∗) · k/n. To recap,
for any n,

qleximin
00 (N) = qnash

00 (N) = qleximin
11 (N) = qnash

11 (N) = 1/(2ν∗) · k/n, qleximin
10 (N) = qnash

10 (N) = 0. (3)

Defining the manipulated pool. Now, define the following manipulating coalition C of size c = k/2− δ such that w(i) = 10
for all i ∈ C — that is, all agents in the coalition will have true vector 10. They will also all misreport the same vector 01, so
w̃(i) = 01 for all i ∈ C. We define the resulting manipulated pool as Ñ := N−C ∪ (w̃(i)|i ∈ C). Then, in the corresponding
ν̃, we have that ν̃00 = ν̃11 = 1/4, ν̃10 = 1/2− c/n, and ν̃01 = c/n.

Optimal selection probabilities in the manipulated pool. Before analyzing any specific objective, we reduce the constraints
to be in terms of a single selection probability q01. Beginning with the raw constraints (where all probabilities qv here are
implicitly qv(Ñ), the probabilities in the manipulated pool):

ν∗ q00 + c/n q01 = 1/2 · k/n
ν∗ q00 + (1− 2ν∗ − c/n) q10 = 1/2 · k/n

ν∗ q00 + c/n q01 + (1− 2ν∗ − c/n) q10 + ν∗ q11 = k/n

This system of 3 linear equations and 4 unknowns simplifies to the following expressions, where all the selection probabilities
are in terms of q01:

q00 = q11 =
1/2 · k/n− c/nq01

ν∗
and q10 =

1/2 · k/n− (1/2 · k/n− c/nq01)

1− 2ν∗ − c/n =
c/n · q01

1− 2ν∗ − c/n.



Handling box constraints. Above, we expressed all agents’ selection probabilities in terms of q01. Now, we will show that for
all q01 ∈ [0, 1], all agents’ selection probabilities fall between [0, 1] for the parameter settings above. First, this is trivially true
for q01. For q00 = q11, we have that

q00 = q11 =
1/2 · k/n− c/nq01

ν∗
=
k − 2(k/2− δ)q01

2n · δ/(2k)
=
k(k − (k − 2δ)q01)

nδ

Bounding this above and below for all q01 ∈ [0, 1]:

0 ≤ 2k

n
=
k(k − (k − 2δ))

nδ
≤ k(k − (k − 2δ)q01)

nδ
≤ k2

nδ
≤ 1.

Finally, for q10,

c/n

1− 2ν∗ − c/n · q01 =
k/2− δ

n(1− 2δ/(2k))− (k/2− δ) =
k/2− δ

n(1− δ/k)− (k/2− δ)
Bounding this above and below for all q01 ∈ [0, 1] (and assuming k ≥ 2, as is always the case in real panels):

0 ≤ k/2− δ
n(1− δ/k)

≤ k/2− δ
n(1− δ/k)− (k/2− δ) ≤

k/2

n(1− 1/2)− k/2 =
k

n− k ≤
k

k2 − k =
1

k − 1
≤ 1.

Now, we’ve shown that in this instance, the constraints q00 ∈ [0, 1], q11 ∈ [0, 1], and q10 ∈ [0, 1] in Equation (2) will never
bind. This means that we have reduced the problem to a single-variable problem of the following form:

min
q01

g(q01) such that q01 ∈ [0, 1].

We now compute the optimizer of this program below for both g = leximin and g = nash, showing that in either case, the
optimizer sets q01 = 1.

Analysis of leximin. leximin has only one degree of freedom q01, so it will maximize the minimum selection probability, i.e., it
will set q01 to maximize the following expression:

min

{
q01,

c/n · q01
1− 2ν∗ − c/n,

1/2 · k/n− c/nq01
ν∗

}
(4)

We will show that the second term in this minimum is the smallest over the entire domain of q01. First, comparing the second
term to the first term in (4), we use that c ≤ k/2 to show that

q01 ≥
c/n · q01

1− 2ν∗ − c/n ⇐⇒ 1− 2ν∗ − c/n ≥ c/n⇐= 1− 2ν∗ ≥ k/n.

Plugging in our parameters, we deduce that 1− 2ν∗ = 1− 2δ/(2k) ≥ 1− 1/2 = 1/2 ≥ k/n, as needed.

Next, comparing the second term to the third term in (4), we deduce that

1/2 · k/n− c/nq01
ν∗

≥ c/n · q01
1− 2ν∗ − c/n ⇐⇒ (1/2 · k/n− c/n · q01)(1− 2ν∗ − c/n) ≥ c/nq01 · ν∗

⇐⇒ k ≥ 2c · q01(ν∗ + 1− 2ν∗ − c/n)

1− 2ν∗ − c/n

⇐⇒ k ≥ 2c · q01(1− ν∗ − c/n)

1− 2ν∗ − c/n (b)

Observe that if (b) holds for q01 = 1, it holds for all q01 ∈ [0, 1]. Thus, setting q01 = 1, we deduce the bound in reverse:

k ≥ 2c(1− ν∗ − c/n)

1− 2ν∗ − c/n ⇐⇒ k ≥ 2(k/2− δ)(1− δ/(2k)− (k/2− δ)/n)

1− 2δ/(2k)− (k/2− δ)/n
⇐⇒ k(1− δ/k − (k − 2δ)/(2n)) ≥ (k − 2δ)(1− δ/(2k)− (k − 2δ)/(2n))

⇐⇒ k − δ − k(k − 2δ)

2n
≥ k − δ/2− k(k − 2δ)

2n
− 2δ + δ2/k + 2δ

k − 2δ

2n

⇐⇒ −δ ≥ δ/2− 2δ + δ2/k + δ
k − 2δ

n

⇐⇒ δ ≤ −δ/2 + 2δ − δ2/k − δ k − 2δ

n



Using that k − 2δ > 0 and n ≥ 2k,

⇐= δ ≤ −δ/2 + 2δ − δ2/k − δ k − 2δ

2k

⇐⇒ δ ≤ δ − δ2/k + δ2/k

⇐⇒ δ ≤ δ.
Then, we have that (b) is true for all q01 ∈ [0, 1].

We have shown that the second term of the minimum in (4) is the smallest term over the entire support q01 ∈ [0, 1]. Because
this term is increasing in q01, the leximin optimal solution will maximize this term by setting q01 = 1.

We conclude that in this instance, qleximin
01 (Ñ) = 1. That is, on the manipulated pool, leximin will give all agents in the

manipulating coalition probability 1. Given that by Equation (3), qleximin
10 (N) = 0 and w(i) = 10 for all i ∈ C, it follows that

for any i ∈ C, πleximin
i (Ñ)− πleximin

i (N) = 1− 0 = 1.
Moreover, we’ve shown this for any size coalition c ∈ [1, k/2). Setting c = 1 (corresponding setting to δ = k/2−(k/2−1)),

this implies that MANIPint(N, leximin, 1) = 1. For generic δ, we conclude that MANIPcomp(N, leximin, k/2− δ) = k/2− δ.

Analysis of nash. Repeating the same analysis for Nash, the function Nash maximizes in this instance is∑
w

νw log(qw) = 2ν∗ log

(
1/2 · k/n− c/nq01

ν∗

)
+ (1− 2ν∗ − c/n) log

(
c/n

1− 2ν∗ − c/n · q01
)

+ c/n log(q01)

This function is concave in q01, so it has a unique maximizer that can be found by the first-order condition: Thus, taking the
derivative with respect to q01 and setting it to zero, we get that this function is maximized when

2ν∗ · ν∗

1/2 · k/n− c/n · q01
· −c
nν∗

+ (1− 2ν∗ − c/n) · 1− 2ν∗ − c/n
c/n · q01

· c/n

1− 2ν∗ − c/n +
c

n · q01
= 0.

Dividing both sides by c/n and making cancellations,

⇐⇒ −2ν∗

1/2 · k/n− c/n · q01
+

(1− 2ν∗ − c/n)/(c/n)

q01
+

1

q01
= 0

⇐⇒ −2ν∗

1/2 · k/n− c/n · q01
+

1− 2ν∗

c/n · q01
= 0

⇐⇒ q01 =
k(1− 2ν∗)

2c

Plugging in our values for ν∗, c,

⇐⇒ q01 =
k(1− 2δ/(2k))

2(k/2− δ)

⇐⇒ q01 =
k − δ
k − 2δ

> 1

Of course, we have deduced that the unconstrained optimizer places q01 > 0. By the concavity of the objective, we know that
the optimizer is then at q01 = 1, at the edge of the box constraint.

We conclude that in this instance, qnash
01 (Ñ) = 1 — that is, on the manipulated pool, nash will give all agents in the ma-

nipulating coalition probability 1. Given that by Equation (3), qnash
10 (N) = 0 and w(i) = 10 for all i ∈ C, for all i ∈ C,

πnash
i (Ñ)− πnash

i (N) = 1− 0 = 1.
Moreover, we’ve shown this for any size coalition c ∈ [1, k/2). Setting c = 1 (corresponding setting to δ = k/2−(k/2−1)),

this implies that MANIPint(N, nash, 1) = 1. For generic δ, we conclude that MANIPcomp(N, nash, k/2− δ) = k/2− δ.

B.2 Proof of Proposition B.1
Let k/n1 be the n-length vector whose entries are all k/n.

Proposition B.1. Let g be any strongly convex (with parameter m) that, when unconstrained, is minimized at at k/n1, the
point where all agents’ selection probabilities are equalized. Let π be a set of marginal probabilities with q = maxi πi. Then,

g(π) ≥ m/2|q − k/n|2.



Proof. Then, by the definition of strong convexity,

g(π)− g(k/n1) +∇g(k/n1)T (π − k/n1) ≥ m/2‖π − k/n‖2 = m/2
∑
i

(πi − k/n)2

≥ m/2|q − k/n|2

Noting that∇g(k/n1)T = 0,

⇐⇒ g(π)− g(k/n1) ≥ m/2|q − k/n|2.
=⇒ g(π) ≥ m/2|q − k/n|2.



C Supplemental materials from Section 4
C.1 Practical justification of Assumption 4.1
What we need is a a setW∗ of feature vectors within the pool such that each group w ∈ W∗ grows linearly in n (up to the size
of the total population) and that this set of vectors is sufficient to permit a feasible solution on their own. We cannot test this
assumption directly in our data, since we only see one realized value of n. Thus, we base our discussion here on the statistical
properties of the random pool recruitment process. Examining this process, we actually expect something stronger to be true, at
least in expectation: every vector group to grow linearly in n, up to variance, which we will discuss at the end. This (expected)
linear growth is due to how the pool is sampled: invitation recipients are uniformly selected from the population, so at least
the expected pool composition, over the randomness of the invitation process, should be roughly constant in n (i.e., all groups
grow linearly in n). We formalize this intuition below with a simple model of the pool formation process, which will also help
us more precisely discuss the role of variance.

To model the pool formation process with minimal assumptions, let Y be the entire underlying population, LetWY be the
set of all unique feature vectors in the population, γw be the fraction of the population with feature vector w, and qi be the
probability that each i ∈ Y decides to participate conditional on being invited. Let q̄w : 1

|{i:wi=w}|
∑
i:wi=w

qi be the average
rate of participation among population members with vectorw. Then, in the process of sampling the poolN (with corresponding
ν(N)), there are two stages of randomness: that of inviting recipients, and their decision of whether to participate. Regardless of
the size of the pool N , E[νw(N)] = γw q̄w for all w ∈ WY — that is, in expectation, all vector groups in the pool are growing
linearly in n (and moreover, the randomness in this process consists of Bernoulli draws, so the pool composition should be
concentrating around its expectation as n gets large). Variance in this process could be in the qi values of agents with vector
w relative to q̄w; variance in the sampling of who receives letters; and variance in the Bernoulli draws by which people decide
whether to participate. Based on this process, variance will mainly be a problem for ensuring linear growth among very small
groups, particularly when n is small.

The potential effects of variance in small groups, especially at practical sample sizes, is precisely the motivation for proving
our results under Assumption 4.1 — a much weaker requirement than the assumption that all groups are growing in n. Under
this assumption, we need only that there some set of vectors yielding a feasible solution growing linearly in n, rather than all
vector groups in the pool. For our assumption to be violated, there would need to be no such set of feature vectors, corresponding
to the unlikely case that any possible set of feature vectors supporting a feasible solution contains a group composing only a
sliver of the population.

C.2 Proof of Theorem 4.3
Proof. Fix an instance with one binary feature with values 0 and 1; let pf,v1 = 1/2; then we know that the total probability
given to agents with vector 0 and 1 is 1/2k. Now, suppose ν0 = 7/8 and ν1 = 1/8. The probabilities are then

π0 =
1/2k

7n/8
=

4

7
k/n, π1 =

1/2k

n/8
= 4k/n.

We will deal with the largest coalition size c = 5n/64 only; the argument for all smaller coalition sizes follows in the same
way. We assume that this coalition defects from vector 0 to vector 1. Then, the resulting probability for vector 1 is

π̃1 =
1/2k

n/8 + c
=

4k

n+ 8c
= 4k/n− 4k ∗ 8c

n(n+ 8c)
≥ 4k/n− 32kc

n2

Now, we characterize the three types of manipulability. Within the coalition, all members receive probability π̃1 when before
they received π0, so

MANIPint(N,A, c) ≥ π̃1 − π0 ≥ 4k/n− 32kc

n2
− 4

7
k/n =

k

n

(
24

7
− 32c

n

)
≥ k

n
(3− 2.5) = 1/2 · k/n.

By joining group 1, the coalition decreases the existing members’ probabilities by making their group more numerous:

MANIPext(N,A, c) ≥ π1 − π̃1 = 4k/n−
(

4k/n− 4k ∗ 8c

n(n+ 8c)

)
=

4k ∗ 8c

n(n+ 8c)
≥ 32kc

8n(n+ c)
=

4k · 5n/64

n(n+ 5n/64)

=
5/16 · k

n(1 + 5/64)

= 20/69 · k/n.
Then, because there are c true 0s impersonating 1s, the true seats given to 0 is, in expectation, k/2 (the number of seats that must
be given to them in expectation, based on the perceived pool), plus however many seats 1-impersonators get in expectation:

MANIPcomp(N,A, c) ≥ (k/2 + c · π̃1)− k/2 = c · π̃1 = c

(
4k/n− 4k ∗ 8c

n(n+ 8c)

)
≥ 3ck/n.

Set η = k · 20/69, and the proof is complete.



D Supplemental materials from Section 5
D.1 Panel selection instances

Instance Organization n k # unique vectors # features ∆

sf(a) Sortition Foundation 312 35 182 6 6.08
sf(b) Sortition Foundation 250 20 92 6 11.78
sf(c) Sortition Foundation 161 44 92 7 3.18
sf(d) Sortition Foundation 404 40 108 6 8.02
sf(e) Sortition Foundation 1727 110 762 7 15.28
cca Center for Blue Democracy 825 75 554 4 10.56
hd Healthy Democracy 239 30 202 7 3.54
newd New Democracy 398 40 173 6 4.16

Table 1: Overview of real-world instances. ∆ is a measure of the self-selection bias in the instance, as defined as Section 5.1.

D.2 Additional instances for Figure 1
Below in Figure 3 we present plots for all 6 other instances, corresponding to those in Figure 1. An interesting aspect of these
results results: For instances cca and sf(d), the strategy MU is harmful for nearly all agents in the pool under all three algorithms.
This is promising for practitioners; although deviating to the feature vector with the most underrepresented feature values is
a strategy that is most likely to be used in practice, cca and sf(d) serve as counterexamples where leximin and nash are not
arbitrarily manipulable against MU.
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instance: sf(d); strategy: OPT-1
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Figure 3: Figures for remaining instances from analysis in Figure 1
.

D.3 (Blank - placeholder to ensure body cross-refs are correct, will remove)
D.4 (Blank - placeholder to ensure body cross-refs are correct, will remove)
D.5 Self-selection bias experiments: methods
Here, we describe the details of the experiments used to produce plots Figure 2(b) and Figure 2(c), and correspondingly, those
in Appendix D.6. For both SSB by interpolating and SSB by feature dropping, we define the precise sequence of instances
we test, and then prove that over the sequences of instances induced by either approach, ∆p,k,N is decreasing (Claim D.1 for
interpolation, and Claim D.2.

SSB by interpolating (corresponding to Figure 2(b)) Here, we studied how our selection algorithms performed against the
OPT-1 strategy over a sequence of pools with decreasing SSB. The pools in this sequence are different convex combinations
of two pools: N (the original pool) and pool N ′, defined as the solution of the convex program below, which finds the pool
“closest” (by Euclidean distance) to N that has SSB ∆p,k,N = 0.

N ′ := arg max
N ′′:|N ′′|=n

‖ν(N)− ν(N ′′)‖2 s.t.
∑

w:wf=v

νw(N ′′) = p(f,v) for all (f, v) ∈ FV.



Now, define the sequence of pools N0, N1, . . . , N10 in which N` is defined such that |N`| = n and

νw(N`) = (1− /̀10) · νw(N) + /̀10 · νw(N ′) for all w ∈ W.

In Figure 2(b), the α on the x axis is then the interpolation weight, ranging over α = (`/10)`∈[10]. More formally, across the x
axis, we’re testing the sequence of instances p, k,N0, p, k,N1, . . . , p, k,N10.
Claim D.1. ∆p,k,N is weakly decreasing over the sequence of instances p, k,N0, . . . , p, k,N10.

Proof. Partition the feature-values FV into three exhaustive subsets:

FV under(N) :=

{
(f, v) :

p(f,v)

η(f,v)(N)
> 1

}
, FV over(N) :=

{
(f, v) :

p(f,v)

η(f,v)(N)
< 1

}
,

and FV exact(N) :=

{
(f, v) :

p(f,v)

η(f,v)(N)
= 1

}
.

Observe that for all (f, v), by the constraints defining N ′, ηf,v(N ′) = p(f,v). Then we have that

ηf,v(N`) = (1− /̀10) η(f,v)(N) + /̀10η(f,v)(N
′) = (1− /̀10) η(f,v)(N) + /̀10p(f,v)

We can see from this expression that (f, v) ∈ FV under(N) =⇒ (f, v) ∈ FV under(N`) for all ` < 10, and likewise for
FV under, FV exact.

Now, let `′ > ` for ` ∈ 0 . . . 9. We have that for all (f, v) ∈ FV over(N),
pf,v

η(f,v)(N`)
>

pf,v
η(f,v)(N`′)

This is seen by the fact that for all (f, v) ∈ FV , the following quantity is decreasing And similarly, for all (f, v) ∈
FV under(N),

pf,v
η(f,v)(N`)

<
pf,v

η(f,v)(N`′)
.

Observing that if FV under(N) is non-empty (and thus FV over(N) is also non-empty) the feature values that yield the max
and min terms in ∆p,k,N must come from FV under(N) and FV over(N), respectively. Therefore, the difference between the
max and the min must be decreasing, and ∆p,k,N0

,∆p,k,N1
, . . . ,∆p,k,N10

is decreasing.

SSB by feature dropping. In a fixed instance, we define the self-selection bias of a single feature according to ∆p,k,N

restricted to the values of f , or formally, as

∆f
p,k,N := max

v∈Vf

p(f,v) / η(f,v)(N)− min
v∈Vf

p(f,v) / η(f,v)(N).

Now, let the features be ordered in decreasing order of their self-selection bias, so ∆f1
p,k,N ≥ ∆f2

p,k,N ≥ · · · ≥ ∆
f|F |
p,k,N . We will

decrease the self-selection bias by successively drop features from the problem in this order.
When we “drop” a feature f out of the problem, we are formally dropping constraints

∑
i:f(i)=v πi = kp(f,v) for all v ∈ Vf

from Equation (OPT-PROB) Accordingly, dropping features corresponds to changing the instance p, k,N by dropping entries of
p. Formally, express p = (p(f,v))f∈F,v∈Vf

. Now, we define a sequence of p1, . . . , p|F | where p` := (p(f,v))f∈{f`...f|F |},v∈Vf
.

Then, across the x axis of Figure 2(c) (and all corresponding figures for other instances), we are testing how our selection
algorithms perform against the OPT-1 strategy over the sequence instances p1, k,N, p2, k,N, . . . p|F |, k,N .
Claim D.2. ∆p,k,N is weakly decreasing over the sequence of instances p1, k,N, . . . p|F |, k,N .

Proof. Dropping constraints f, v out of FV can only decrease max(f,v)∈FV
p(f,v)

η(f,v)(N) and increase min(f,v)∈FV
p(f,v)

η(f,v)(N) .

D.6 Self-selection bias experiments: supplemental empirical results
Additional instances for Figure 2(b). Figure 4 shows tests decreasing self-selection bias by interpolation for all remaining
instances.

Additional instances for Figure 2(c). Figure 5 shows tests decreasing self-selection bias by feature dropping for all remain-
ing instances.
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Figure 4: Figures for remaining instances from analysis in Figure 2(b)
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Figure 5: Figures for remaining instances from analysis in Figure 2(c)

D.7 Empirical minimum selection probabilities given by norms

Minimum probability sf(a) sf(b) sf(c) sf(d) sf(e) sf(hd) sf(newd) sf(cca)
`2 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
`∞ 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 2: Minimum selection probability given to any agent by `2, `∞ across instances


