On polynomial-time mixing for high-dimensional MCMC in

 non-linear regression
Sven Wang (HU Berlin)

Research unit seminar Mathematical Statistics in the Information Age"
November 3, 2023
Joint work with:
Richard Nickl (Cambridge), A.S. Bandeira (ETH), Antoine Maillard (ETH)
arxiv:2009.05298 (J. Eur. Math. Soc., 2022)
arxiv:2209.02001 (Phil. Trans. R. Soc. A, 2023)

Bayesian computation

In this talk, we consider sampling from a D-dimensional posterior distribution

$$
\pi\left(\theta \mid Z^{(N)}\right) \propto e^{\ell_{N}(\theta)} \pi(\theta), \quad \theta \in \mathbb{R}^{D}
$$

using Markov chain Monte Carlo (MCMC).

- π is prior distribution on \mathbb{R}^{D}.
- ℓ_{N} is log-likelihood function at sample size N.
- D is model dimension.

Sampling tasks are ubiquitous in high-dimensional Bayesian statistics, inverse problems, data assimilation, etc.

This talk: Synthesis of statistical and computational theory.

Main computational question

In complex models,

- D may grow with N ('high-dimensional').
- $-\ell_{N}$ may be complex (e.g. non-convex, multi-modal).

Fundamental question: Are high-dimensional Bayesian posterior distributions feasible to compute and if so, when?

Goals:

(A) Generate random variables $\vartheta \in \mathbb{R}^{D}$ with law $\mathcal{L}(\vartheta) \approx \Pi\left(\theta \mid Z^{(N)}\right)$,
(B) Compute 'aspects' of the posterior

- Functionals: $\int_{\Theta} H(\theta) d \Pi\left(\theta \mid Z^{(N)}\right) \in \mathbb{R}$.
- Posterior mean: $\int_{\Theta} \theta d \Pi\left(\theta \mid Z^{(N)}\right) \in \mathbb{R}^{D}$,
- MAP estimate: $\hat{\theta}_{M A P} \in \arg \max _{\theta} \pi\left(\theta \mid Z^{(N)}\right)$?

In this talk: 'feasible' computational cost $=$ polynomial time.

Popular approach: Markov Chain Monte Carlo

Basic idea: Generate ergodic Markov chain $\left(\vartheta_{k}: k=0,1, \ldots\right)$ on \mathbb{R}^{D} such that

$$
\Pi\left(\cdot \mid Z^{(N)}\right) \text { is the unique invariant distribution for }\left(\vartheta_{k}\right) \text {. }
$$

Tasks (A) and (B) are then naturally addressed:
(A) To approximate the posterior distribution, after some mixing time $J_{\text {mix }}$,

$$
\mathcal{L}\left(\vartheta_{k}\right) \approx \Pi\left(\cdot \mid Z^{(N)}\right) \text { for any } k \geq J_{\text {mix }} .
$$

(B) To compute integrals, we can take ergodic averages,

$$
\frac{1}{J} \sum_{k=J_{m i x}+1}^{J_{m i x}+J} H\left(\vartheta_{k}\right) \approx \int_{\Theta} H(\theta) d \Pi\left(\theta \mid Z^{(N)}\right), \quad J \in \mathbb{N} .
$$

Question rephrased: How do $J_{\text {mix }}, J$ depend on D and N ?

Inverse (regression) problem

Let $\mathcal{O} \subseteq \mathbb{R}^{d}$ (bounded, $d \leq 3$) and consider a forward map

$$
\mathcal{G}: \mathbb{R}^{D} \rightarrow C(\mathcal{O}), \quad D \in \mathbb{N}
$$

We consider (non-linear) \mathcal{G} arising from some PDE model.

Regression data: We observe $Z^{(N)}=\left(Y_{i}, X_{i}\right)_{i=1}^{N}$, where

$$
Y_{i}=\mathcal{G}(\theta)\left(X_{i}\right)+\varepsilon_{i}, \quad i=1, \ldots, N
$$

and $\varepsilon_{i} \sim^{i . i . d .} N(0,1), X_{i} \sim^{\text {i.i.d. }} \operatorname{Uniform}(\mathcal{O})$.

Prominent examples:

- Inverse problems [Stuart (2010)]
- Data assimilation [Majda \& Harlim (2012), Reich \& Cotter (2015)]

Bayesian inference with Gaussian priors

Gaussian prior: Suppose $\theta \sim N(0, \Sigma)$.
Posterior density:

$$
\pi\left(\theta \mid Z^{(N)}\right) \propto \exp \left[-\frac{1}{2} \sum_{i=1}^{N}\left(Y_{i}-\mathcal{G}(\theta)\left(X_{i}\right)\right)^{2}-\frac{1}{2} \theta^{T} \Sigma^{-1} \theta\right]
$$

Characteristics:

- Non-log-concavity. For nonlinear $\mathcal{G},-\ell_{N}$ may be non-convex.
- Spiked-ness. $\pi\left(\cdot \mid Z^{(N)}\right)$ may be multimodal with local optima of depth $O(N)$.
- Posterior consistency: the data becomes informative as $N \rightarrow \infty$ (and thus $D \rightarrow \infty)$.

Curse of dimensionality? Sampling may require exponential (in D, N) computation [Bickel et al (2008), Rebeschini \& van Handel (2015), Yang, Wainwright \& Jordan (2016)]

Theoretical guarantees for large D

I. Preconditioned Crank-Nicolson

- [Hairer, Stuart and Vollmer (2014)] prove dimension-independent 'spectral gap', but exponential dependence on other parameters.

II. Langevin Monte Carlo

- Log-concave: [Dalalyan (2017), Durmus \& Moulines $(2017,2019)$] derive bounds with polynomial dependence on relevant parameters.
- Non-log-concave: [Vempala \& Wibisono (2019)] use log-Sobolev assumptions, [Ma et al. (2018) use convexity outside some Euclidean ball.

How to break the exponential vs. polynomial barrier? In the statistical setting, have additional structure:

- Bayesian posterior contraction [Ghosal \& van der Vaart '17]. How much can computation be localized?
- Bernstein-von Mises phenomenon / asymptotic normality, even for non-linear problems [e.g. Nickl '17].
I. Upper bounds

A concrete example: Steady-state Schrödinger equation

Let $\mathcal{O} \subseteq \mathbb{R}^{d}$ be bounded $(d \leq 3)$ and $g: \partial \mathcal{O} \rightarrow\left(g_{\min }, \infty\right), g_{\min }>0$, be given.

PDE solution map

$$
G: f \mapsto u_{f} \equiv u, \quad \text { with }\left\{\begin{array}{l}
\frac{\Delta}{2} u-f u=0 \quad \text { on } \mathcal{O} \\
u=g \quad \text { on } \partial O
\end{array}\right.
$$

- For sufficiently regular $f: \mathcal{O} \rightarrow[0, \infty)$, a unique solution $u_{f} \in C^{2}(\mathcal{O})$ exists by elliptic PDE theory.
- G is nonlinear, as seen from the Feynman-Kac formula

$$
u_{f}(x)=E_{x}\left[g\left(X_{\tau_{\mathcal{O}}}\right) e^{-\int_{0}^{\tau \mathcal{O}} f\left(X_{s}\right) d s}\right]
$$

where $\left(X_{t}: t \geq 0\right)$ is a d-dimensional Brownian motion started at $x \in \mathcal{O}$ with exit time $\tau_{\mathcal{O}}$.

- Appears e.g. in photoacoustic tomography (PAT) [Bal and Uhlmann (2009)].

The forward map \mathcal{G}

We fix a parameterisation

$$
\theta \mapsto f_{\theta}, \quad f_{\theta} \equiv \Phi \circ\left(\sum_{k=1}^{D} \theta_{k} e_{k}\right) .
$$

- Here $\left(e_{k}: k \geq 1\right)$ are D eigenfunctions of the Dirichlet Laplacian.
- $\Phi: \mathbb{R} \rightarrow(0, \infty)$ is a 'regular' link function ensuring positivity.

The forward map is then given by

$$
\mathcal{G}: \mathbb{R}^{D} \rightarrow C^{2}(\mathcal{O}), \quad \theta \mapsto G\left(f_{\theta}\right) \equiv u_{f_{\theta}}
$$

In what follows, we assume $Z^{(N)}$ is drawn from $P_{\theta_{0}}^{N}$ for some ground truth θ_{0} (not necessarily $\theta_{0} \in \mathbb{R}^{D}$).

Existence of polynomial-time algorithm

Our first main result regards computation of the posterior mean,

$$
E^{\Pi}\left[\theta \mid Z^{(N)}\right]=\int_{\mathbb{R}^{D}} \theta d \Pi\left(\theta \mid Z^{(N)}\right)
$$

Theorem (Nickl and W, 2020)
Grant mild regularity assumptions on model dimension D, the prior Π and the ground truth θ_{0}. For any $P>0$ and precision level $\varepsilon \geq N^{-P}$, there exists a sampling algorithm with polynomial computational cost

$$
O\left(N^{b_{1}} D^{b_{2}} \varepsilon^{-b_{3}}\right) \quad\left(b_{1}, b_{2}, b_{3}>0\right)
$$

and whose output $\hat{\theta}_{\varepsilon}$ satisfies that with high probability (under the joint law of the data $Z^{(N)}$ and the randomness of the algorithm),

$$
\left\|\hat{\theta}_{\varepsilon}-E^{\Pi}\left[\theta \mid Z^{(N)}\right]\right\|_{\mathbb{R}^{D}} \leq \varepsilon
$$

Description of algorithm

The algorithm is a Langevin-type Markov chain ($\left.\vartheta_{k}: k \geq 0\right)$.

$$
\begin{cases}\vartheta_{0} & =\theta_{\text {init }} \\ \vartheta_{k+1} & =\vartheta_{k}+\gamma \nabla \log \tilde{\pi}\left(\vartheta_{k} \mid Z^{(N)}\right)+\sqrt{2 \gamma} \xi_{k+1}\end{cases}
$$

- The initialiser $\theta_{\text {init }}$ is computable in polynomial time,
- $\left(\xi_{k}: k \geq 1\right)$ are $N\left(0, I_{D \times D}\right)$ random variables,
- $\tilde{\pi}\left(\cdot \mid Z^{(N)}\right)$ is a log-concave 'proxy' posterior distribution,

$$
\tilde{\pi}\left(\theta \mid Z^{(N)}\right) \propto e^{\tilde{\ell}_{N}(\theta)} \pi(\theta)
$$

where $\tilde{\ell}_{N}$ is a surrogate likelihood $\tilde{\ell}_{N}=\ell_{N}$ for $\left\|\theta-\theta_{0, D}\right\|_{\mathbb{R}^{D}} \lesssim D^{-4 / d}$.

- $\tilde{\pi}\left(\theta \mid Z^{(N)}\right)$ is constructed from the data in poly-time.

Hypotheses for the next theorems

- Precision level: Let $\varepsilon \geq N^{-P}$ (any $P>0$ fixed).
- Dimension constraint:

$$
D \lesssim N^{d /(2 \alpha+d)}, \quad \alpha>6 .
$$

- Bias: Suppose that θ_{0} is sufficiently well-approximated by $\theta_{0, D} \in \mathbb{R}^{D}$.
- Step size: For some $a>0$ (e.g. when $d=3, a \approx 8$), set

$$
\gamma=\gamma_{\varepsilon, D, N} \simeq \varepsilon^{2} D^{-a} N^{-1}
$$

Concentration inequalities for ergodic averages

For a 1-Lipschitz function, $H: \mathbb{R}^{D} \rightarrow \mathbb{R}$, let

$$
\hat{\mu}(H)=\frac{1}{J} \sum_{k=J_{\text {mix }}+1}^{J_{\text {mix }}+J} H\left(\vartheta_{k}\right)
$$

Theorem (Nickl and W, 2020)

There exist constants $g_{D, N, \varepsilon}=O\left(D^{b_{1}} N^{b_{2}} \varepsilon^{-b_{3}}\right), b_{1}, b_{2}, b_{3}>0$ such that for $J_{\text {mix }} \geq g_{D, N, \varepsilon}$ and with high probability under the data,

$$
\mathbf{P}_{M C M C}\left(\left|\hat{\mu}(H)-E^{\Pi}\left[H \mid Z^{(N)}\right]\right| \geq \varepsilon\right) \lesssim \exp \left(-J / g_{D, N, \varepsilon}\right)
$$

Hence, there exists $\eta>0$ such that with high $P_{\theta_{0}}^{N} \times \mathbf{P}_{M C M C \text {-probability and }}$ polynomially many iterates,

$$
\left\|\bar{\theta}_{J_{\text {mix }}}^{J}-\theta_{0}\right\|_{\mathbb{R}^{D}} \lesssim N^{-\eta}
$$

Convergence in Wasserstein distance

For probability measures μ_{1}, μ_{2} on \mathbb{R}^{D}, define the Wasserstein-2 distance

$$
W_{2}^{2}\left(\mu_{1}, \mu_{2}\right):=\inf _{\nu \in \Gamma\left(\mu_{1}, \mu_{2}\right)} \int_{\mathbb{R}^{D}}\left\|\theta_{1}-\theta_{2}\right\|_{\mathbb{R}^{D}}^{2} d \nu\left(\theta_{1}, \theta_{2}\right)
$$

Theorem (Nickl and W, 2020)
With high probability, the Markov chain $\left(\vartheta_{k}\right)$ with step size $\gamma_{\varepsilon}>0$ satisfies that for all $k \geq 1$,

$$
W_{2}^{2}\left(\mathcal{L}\left(\vartheta_{k}\right), \Pi\left(\cdot \mid Z^{(N)}\right)\right) \lesssim D^{2 \alpha / d}\left(1-c \gamma_{\varepsilon} N D^{-4 / d}\right)_{+}^{k}+\varepsilon^{2}
$$

and $W_{2}^{2}\left(\mathcal{L}\left(\vartheta_{k}\right), \Pi\left(\cdot \mid Z^{(N)}\right)\right) \leq 2 \varepsilon^{2}$ for $k \geq k_{\text {mix }}=O\left(D^{b_{1}} N^{b_{2}} \varepsilon^{-b_{3}}\right)$.

- The term $c \gamma_{\varepsilon} N D^{-4 / d}$ can be thought of as a 'spectral gap'.
- The error incurred by Euler discretisation and proxy construction is $\leq \varepsilon^{2}$.

Computation of the MAP estimate

Theorem (Nickl and W, 2020)

Consider the gradient descent algorithm

$$
\vartheta_{0}=\theta_{\text {init }}, \quad \vartheta_{k+1}=\vartheta_{k}+\gamma_{\varepsilon} \nabla \log \tilde{\pi}\left(\vartheta_{k} \mid Z^{(N)}\right)
$$

Then, with high $P_{\theta_{0}}^{N}$-probability, we have

$$
\left\|\vartheta_{k}-\hat{\theta}_{M A P}\right\|_{\mathbb{R}^{D}} \lesssim\left(1-\frac{c}{D^{4 / d} \gamma_{\varepsilon}}\right)^{k} \quad \text { for all } k \geq 1
$$

Moreover, for some constant $\eta>0$ and any $k \geq g_{D, N}=O\left(D^{b_{1}} N^{b_{2}}\right)$,

$$
\left\|\vartheta_{k}-\theta_{0}\right\|_{\mathbb{R}^{D}} \lesssim N^{-\eta}
$$

Key proof idea: 'Gradient stability' implies local curvature

Consider the expected negative likelihood

$$
\theta \mapsto E_{\theta_{0}}[-\ell(\theta, Z)]:=\frac{1}{2} E_{\theta_{0}}\left[(Y-\mathcal{G}(\theta)(X))^{2}\right]
$$

In 'regular' models, the Hessian satisfies (for $\|v\|_{\mathbb{R}^{D}} \leq 1$ and some norm $\|\cdot\|_{*}$)

$$
v^{\top} E_{\theta_{0}}\left[-\nabla^{2} \ell(\theta, Z)\right] v=\left\|v^{T} \nabla \mathcal{G}(\theta)\right\|_{L^{2}(\mathcal{O})}^{2}+O\left(\left\|\mathcal{G}(\theta)-\mathcal{G}\left(\theta_{0}\right)\right\|_{*}\right)
$$

Thus, if there is a lower bound for $\left\|v^{T} \nabla \mathcal{G}(\theta)\right\|_{L^{2}(\mathcal{O})}^{2}$, then one has local average curvature

$$
\inf _{\theta \in \mathcal{B}} \lambda_{\min }\left(E_{\theta_{0}}\left[-\nabla^{2} \ell(\theta, Z)\right]\right) \geq c_{\min }>0
$$

on some neighbourhood \mathcal{B} of θ_{0}, whose size needs to be quantified.

- For Schrödinger model, we can verify this via elliptic PDE theory on a neighbourhood of size $\operatorname{diam}(\mathcal{B})=D^{-4 / d}$.

Intermediate result: Globally log-concave Wasserstein approximation

Theorem (Nickl and W, 2020)
With probability $1-c \exp \left(-c^{\prime} N^{d /(2 \alpha+d)}\right)$ under the data:
(i) The posterior density $\pi\left(\cdot \mid Z^{(N)}\right)$ is locally log-concave on \mathcal{B} and has a unique mode $\hat{\theta}_{\text {MAP }}$.
(ii) The proxy density $\tilde{\pi}\left(\cdot \mid Z^{(N)}\right)$ is globally log-concave with unique mode $\hat{\theta}_{M A P}$.
(iii) For all $N \in \mathbb{N}$, with W_{2} denoting Wasserstein distance,

$$
W_{2}^{2}\left(\tilde{\Pi}\left(\cdot \mid Z^{(N)}\right), \Pi\left(\cdot \mid Z^{(N)}\right)\right) \leq \exp \left(-N^{d /(2 \alpha+d)}\right)
$$

- $\tilde{\Pi}\left(\cdot \mid Z^{(N)}\right)$ is not Gaussian and non-asymptotic, thus not based on a Bernstein-von-Mises or Laplace approximation.
- Key property: gradient stability of $\nabla \mathcal{G}$

$$
\left\|v^{T} \nabla \mathcal{G}(\theta)\right\|_{L^{2}(\mathcal{O})}^{2} \gtrsim D^{-\kappa}\|v\|_{\mathbb{R}^{D}}^{2}, \quad \kappa>0, \theta \in \mathcal{B}
$$

and regularity of $\mathcal{G}, \nabla \mathcal{G}, \nabla^{2} \mathcal{G}$.

Extensions

Gradient stability and local computability results have been extended:

- Non-Abelian X-ray transforms [Bohr \& Nickl (2021)]
- Darcy flow [Nickl (2022)]
- High-dimensional GLMs [Altmeyer (2022)]

Open questions:

- Numerical investigation
- Polynomial-time initialisation
- Beyond inverse problems?
II. Lower bounds

A specific non-linear regression model

Consider data from random design regression

$$
Y_{i}=\mathcal{G}(\theta)\left(X_{i}\right)+\varepsilon_{i}, \varepsilon_{i} \sim N(0,1)
$$

We choose the particular forward operator

$$
\mathcal{G}(\theta)=\sqrt{w\left(\|\theta\|_{\mathbb{R}^{D}}\right)} \times g(\cdot) .
$$

- $w:[0, \infty) \rightarrow \mathbb{R}$ is a non-decreasing univariate function.
- $g: \mathcal{O} \rightarrow[1,2]$ is an arbitrary smooth, fixed regression function.
- Assume that $D / N \simeq \kappa>0$.

Prior distribution: $\theta \sim N(0$, Id $/ D)$.

Figure 1: Function w.

Exponential lower bound for the hitting time of Markov chains

Theorem (Bandeira, Maillard, Nickl \& W)
Suppose that \mathcal{G} is as constructed before, with appropriate choice of constants.
There exists a fixed constant $s \in(0,1 / 3)$ such that:
(1) Posterior contraction: It holds that $\Pi\left(\{\theta:\|\theta\| \leq s\} \mid Z^{(N)}\right) \xrightarrow{N \rightarrow \infty} 1$ in probability.
(2) Unimodality: The expected likelihood $\ell(\theta)$ is unimodal with mode 0, locally log-concave near 0 and monotonically decreasing in $\|\theta\|_{\mathbb{R}^{D}}$ on \mathbb{R}^{D}.
(3) Exponential hitting time: For any Markov chain $\left(\vartheta_{k}: k \geq 1\right)$ with 'step size' at most $c>0$, and for some initialisation point $\vartheta_{0} \in\left\{\theta:\|\theta\|_{\mathbb{R}^{D}} \in(2 / 3,2)\right\}$, the hitting time $\tau_{s}=\inf _{k \geq 1}\left\{\left\|\vartheta_{k}\right\| \leq s\right\}$ is lower bounded with high probability:

$$
\tau_{s} \geq \exp (N / 2)
$$

Lemma: posterior probability ratios of annuli

Let Θ_{1}, Θ_{2} be two disjoint annuli

$$
\Theta_{1}=\left\{\theta:\|\theta\| \in\left[s_{1}, \eta_{1}\right]\right\}, \quad \Theta_{2}=\left\{\theta:\|\theta\| \in\left[s_{2}, \eta_{2}\right]\right\},
$$

for $s_{1}<\eta_{1}<s_{2}<\eta_{2}$.

Proposition (Posterior ratios)

Assume that the prior satisfies, for some constants $\nu>0$ and
$c=c(w)>0$,

$$
\begin{equation*}
\Pi\left(\Theta_{1}\right) / \Pi\left(\Theta_{2}\right) \leq \exp (-N(\nu-c)) \tag{2.1}
\end{equation*}
$$

for some $c>0$. Suppose that function w is 'slowly increasing' in the region $\left[s_{1}, s_{2}+\eta_{2}\right]$. Then, with high P_{0}^{N}-probability as $N \rightarrow \infty$,

$$
\Pi\left(\Theta_{1} \mid Z^{(N)}\right) / \Pi\left(\Theta_{2} \mid Z^{(N)}\right) \leq \exp (-N \nu)
$$

- This holds even when the posterior is concentrating on a $\left\{\|\theta\| \leq s_{1}\right\}$.

A hitting time bound for Markov chains

Proposition (cf. Jerrum '03)
Let $\left(\vartheta_{k}: k \in \mathbb{N}\right)$ be any Markov chain with invariant measure $\mu=\Pi\left(\cdot \mid Z^{(N)}\right)$.
Suppose ϑ_{0} is drawn from the conditional distribution $\mu\left(\cdot \mid \Theta_{2}\right)$. Denote by τ the hitting time of the Markov chain onto Θ_{1}. If

$$
\Pi\left(\Theta_{1} \mid Z^{(N)}\right) / \Pi\left(\Theta_{2} \mid Z^{(N)}\right) \leq \exp (-N \nu)
$$

it holds that

$$
\operatorname{Pr}(\tau \leq K) \leq K e^{-N \nu}, \quad K>0
$$

Intuition for hitting time lower bound

Θ_{1} forms a 'barrier' for (local) Markov chains to go from Θ_{2} to B_{s}.

Extensions \& Outlook

- 'Matern’ Priors: Our results also encompass prior distributions $\Pi=N\left(0, \Sigma_{\alpha}\right)$ with smoothness index $\alpha>d / 2$.
- Lower dimensional models: Usual choices to optimize 'bias-variance tradeoff' are $D=o(N)$, while we crucially assumed $D \simeq N$.
- PDE models: Do free entropy barriers exist in 'real' settings such as PDE models?

References

- Nickl and W: On polynomial-time computation of high-dimensional posterior measures by Langevin-type algorithms. J. Eur. Math. Soc. (2022).
- Bandeira, Maillard, Nickl and SW: On free energy barriers in Gaussian priors and failure of MCMC for high-dimensional unimodal distributions. Phil. Trans. R. Soc. A (2023).
- R Nickl: Bayesian non-linear statistical inverse problems. EMS lecture notes series (2023).

Thank you for listening!

Proof overview

Description of algorithm

We now describe the key Langevin-type Markov chain $\left(\vartheta_{k}: k \geq 1\right)$.
Step I: Initialisation. We initialise the algorithm at some specific $\vartheta_{0}=\theta_{\text {init }}$, where $\theta_{\text {init }}$ is computable 'in polynomial time'.

Step II: Proxy likelihood construction. Construct a 'proxy' likelihood function $\tilde{\ell}_{N}$ around $\theta_{\text {init }}$,

$$
\tilde{\ell}_{N}(\theta):=\alpha(\theta) \ell_{N}(\theta)-g(\theta) .
$$

Here $g: \mathbb{R}^{D} \rightarrow \mathbb{R}$ is globally convex, $\alpha: \mathbb{R}^{D} \rightarrow \mathbb{R}$ is a cut-off function. With high probability, we will see that $\tilde{\ell}_{N}=\ell_{N}$ locally on

$$
\mathcal{B}:=\left\{\theta \in \mathbb{R}^{D}:\left\|\theta-\theta_{0, D}\right\|_{\mathbb{R}^{D}} \leq \frac{1}{D^{4 / d}(\log N)}\right\}
$$

Description of algorithm

The construction from Step II induces a proxy posterior distribution,

$$
\tilde{\pi}\left(\theta \mid Z^{(N)}\right) \propto e^{\tilde{\ell}_{N}(\theta)} \pi(\theta), \quad \log \tilde{\pi}\left(\theta \mid Z^{(N)}\right)=\tilde{\ell}_{N}(\theta)+\log \pi(\theta)+\text { const. }
$$

Step III: Langevin-type Markov chain. For stepsize $\gamma>0$ and $\xi_{k} \sim^{i . i . d .} N\left(0, I_{D \times D}\right)$, define $\left(\vartheta_{k}\right)$ with law \mathbf{P} by

$$
\begin{cases}\vartheta_{0} & =\theta_{\text {init }} \\ \vartheta_{k+1} & =\vartheta_{k}+\gamma \nabla \log \tilde{\pi}\left(\vartheta_{k} \mid Z^{(N)}\right)+\sqrt{2 \gamma} \xi_{k+1}\end{cases}
$$

It is the Euler discretisation of the (continuous-time) diffusion process on \mathbb{R}^{D}

$$
d L_{t}=\nabla \log \tilde{\pi}\left(L_{t} \mid Z^{(N)}\right) d t+\sqrt{2} d W_{t} \quad t \geq 0
$$

with invariant density $\tilde{\pi}\left(\cdot \mid Z^{N}\right)$, where W_{t} is a D-dimensional Brownian motion.

