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Bayesian computation

In this talk, we consider sampling from a D-dimensional posterior distribution

7(0]1Z™) x VO 7(6), 6 RP,

using Markov chain Monte Carlo (MCMC).

e T is prior distribution on RP.
e Uy is log-likelihood function at sample size N.

e D is model dimension.

Sampling tasks are ubiquitous in high-dimensional Bayesian statistics, inverse
problems, data assimilation, etc.

This talk: Synthesis of statistical and computational theory.



Main computational question

In complex models,

e D may grow with N (‘high-dimensional’).

e —(y may be complex (e.g. non-convex, multi-modal).

Fundamental question: Are high-dimensional Bayesian posterior distribu-
tions feasible to compute and if so, when?

Goals:

(A) Generate random variables ¥ € R” with law £(9) ~ M(9|ZV),
(B) Compute ‘aspects’ of the posterior

e Functionals: [ H(0)dN(0|Z™) € R.
e Posterior mean: [, 0dMN(0|Z) € R®,

e MAP estimate: Oyap € arg maxg ﬂ(9|z(N))?

In this talk: ‘feasible’ computational cost = polynomial time.



Popular approach: Markov Chain Monte Carlo

Basic idea: Generate ergodic Markov chain (9« : k = 0,1,...) on R? such that

M(-|Z™) is the unique invariant distribution for ().

Tasks (A) and (B) are then naturally addressed:
(A) To approximate the posterior distribution, after some mixing time Jmix,
L(Wy) = N(-|ZM) for any k > Jmi.

(B) To compute integrals, we can take ergodic averages,

Imix+J
% > H(ﬁk)m/H(H)dl'l(mZ(N)), JeN.
k=Jmix+1 ©

Question rephrased: How do Jnx, J depend on D and N?




Inverse (regression) problem

Let © C R (bounded, d < 3) and consider a forward map
G:R° = C(0), DeN.

We consider (non-linear) G arising from some PDE model.

Regression data: We observe ZM) = (Y;, X;)V.;, where
Yi=G(0)(Xi)+ei, i=1,..,N,

and &; ~% N(0,1), X; ~""¢ Uniform(O).

Prominent examples:

e |nverse problems [Stuart (2010)]

e Data assimilation [Majda & Harlim (2012), Reich & Cotter (2015)]



Bayesian inference with Gaussian priors

Gaussian prior: Suppose 0 ~ N(0, X).

Posterior density:

5
2

i

7(012) oc exp [~ 2 3 (Vi ~ GO)(X))° ~ %anlo].

N
=il

Characteristics:

e Non-log-concavity. For nonlinear G, —{y may be non-convex.
o Spiked-ness. 7(-|Z(")) may be multimodal with local optima of depth O(N).

e Posterior consistency: the data becomes informative as N — oo (and thus
D — o).

Curse of dimensionality? Sampling may require exponential (in D, N) computation
[Bickel et al (2008), Rebeschini & van Handel (2015), Yang, Wainwright & Jordan (2016)]



Theoretical guarantees for large D

l. Preconditioned Crank-Nicolson
e [Hairer, Stuart and Vollmer (2014)] prove dimension-independent ‘spectral gap’, but

exponential dependence on other parameters.

Il. Langevin Monte Carlo
e Log-concave: [Dalalyan (2017), Durmus & Moulines (2017,2019)] derive bounds with
polynomial dependence on relevant parameters.
e Non-log-concave: [Vempala & Wibisono (2019)] use log-Sobolev assumptions, [Ma et

al. (2018) use convexity outside some Euclidean ball.

How to break the exponential vs. polynomial barrier? In the statistical

setting, have additional structure:
e Bayesian posterior contraction [Ghosal & van der Vaart '17]. How much
can computation be localized?
e Bernstein-von Mises phenomenon / asymptotic normality, even for

non-linear problems [e.g. Nickl '17].




I. Upper bounds



A concrete example: Steady-state Schrédinger equation

Let O C RY be bounded (d < 3) and g : 9O — (gmin, 50), &min > 0, be given.

PDE solution map

. %u—fu:O on O,
G:f—u=u, with
u=g ond0.

e For sufficiently regular f : © — [0,00), a unique solution ur € C?(O) exists by
elliptic PDE theory.

e G is nonlinear, as seen from the Feynman-Kac formula
ur(x) = [5; [g(xro)e_ Jro f(Xs)ds:|7

where (X; : t > 0) is a d-dimensional Brownian motion started at x € O with

exit time 7o.

e Appears e.g. in photoacoustic tomography (PAT) [Bal and Uhlmann (2009)].



The forward map G

We fix a parameterisation

0 f, for=do (i@kek)
k=1

e Here (ex : k > 1) are D eigenfunctions of the Dirichlet Laplacian.

e ®:R — (0,00) is a ‘regular’ link function ensuring positivity.

The forward map is then given by

G:RP - CX(0), 0+ G(f) = uy,.

In what follows, we assume 7M™ is drawn from Pé\(') for some ground truth 6y (not
necessarily 6y € RP).



Existence of polynomial-time algorithm

Our first main result regards computation of the posterior mean,

E”[9|Z<N>]:/ 0dn(g]zM).
RD

Theorem (Nickl and W, 2020)
Grant mild regularity assumptions on model dimension D, the prior Il and

the ground truth 6y. For any P > 0 and precision level ¢ > N~F, there
exists a sampling algorithm with polynomial computational cost

O(N"D™2e7%) (b1, by, b3 > 0),

and whose output 0. satisfies that with high probability (under the joint law
of the data Z™) and the randomness of the algorithm),

16 — E"[61Z™M]|| 50 < e
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Description of algorithm

The algorithm is a Langevin-type Markov chain (9« : k > 0).

9o = Oinit,
D1 = 9k + 7V log #(9|ZM) + 27k,

e The initialiser 0j,;: is computable in polynomial time,
e (& : k> 1) are N(0, Ipxp) random variables,

° 7”r(-|Z(N)) is a log-concave ‘proxy’ posterior distribution,

[ #(01ZM) o VO 7(6),

where fy is a surrogate likelihood Zy = £y for || — 00,0 g0 S D=4/,

~

o #(0]ZM) is constructed from the data in poly-time.

11



Hypotheses for the next theorems

e Precision level: Let ¢ > N7 (any P > 0 fixed).

e Dimension constraint:

[ D < N9/@etd) o > 6,

e Bias: Suppose that 0y is sufficiently well-approximated by 6o.p € RP.

e Step size: For some a > 0 (e.g. when d =3, a = 8), set

Y = Ye,D,N = E2D_3N_1.
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Concentration inequalities for ergodic averages

For a 1-Lipschitz function, H : RP — R, let

i

pH)Y =5 > H).

k=Jmix+1

Theorem (Nickl and W, 2020)
There exist constants gpn,e = O(D®* N*2c75) | by, by, by > 0 such that for

JImix > gp,n,e and with high probability under the data,

Pucwc (|A(H) — EMHIZM]| > ) < exp(—/g0.2).

Hence, there exists 7 > 0 such that with high Pé\(’) X P mcmc-probability and
polynomially many iterates,
187, = Bollgo < N7

Imix
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Convergence in Wasserstein distance

For probability measures ju1, 12 on RP, define the Wasserstein-2 distance

W) i= | _ind [ 61 = alodu(64,02)
R

vEr(p1,p2)

Theorem (Nickl and W, 2020)
With high probability, the Markov chain (V) with step size v > 0 satisfies
that for all k > 1,

W2 (L(9),N(1Z2M)) £ D**79(1 - cyeND /)" + &2,

and W3 (L(9x), N(-|ZM)) < 2¢? for k > kmix = O(DP N"275).

e The term cy.ND~*/9 can be thought of as a ‘spectral gap’.
. g g

e The error incurred by Euler discretisation and proxy construction is < &
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Computation of the MAP estimate

Theorem (Nickl and W, 2020)
Consider the gradient descent algorithm

B0 = Onie,  Ini1 = Uk + 7=V log 7 (9| ZN).

Then, with high P(Ql’)-probabi/ity, we have

A c k
Hﬁk - 0MAPHRD S (1 - m) for all k Z 1.

Moreover, for some constant 1 > 0 and any k > gp.ny = O(D” N*2),

19 = bolpo S N7
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Key proof idea: ‘Gradient stability’ implies local curvature

Consider the expected negative likelihood
1
0 Eoo[—£(6, 2)] == 5 Eao[(Y = G(6)(X))"]-

In ‘regular’ models, the Hessian satisfies (for ||v|[zp < 1 and some norm || - |)

v Ego[=V2(0, Z)]v = v VG(B)I[120) + OUIG(0) — G(60)]l-)-

Thus, if there is a lower bound for HVTVQ(G)Hfg(O), then one has local average

curvature

inf@EB Amin(EOU [_VQZ(Q, Z)]) Z Cmin > 0

on some neighbourhood B of 6y, whose size needs to be quantified.

e For Schroédinger model, we can verify this via elliptic PDE theory on a
neighbourhood of size diam(B) = D~*/.
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Intermediate result: Globally log-concave Wasserstein approximation

Theorem (Nickl and W, 2020)
With probability 1 — c exp(—c’ N/ @Y under the data:

(i) The posterior density m(-|Z™")) is locally log-concave on B and has a
unique mode Omap.

(ii) The proxy density 7~r(-|Z(N)) is globally log-concave with unique mode
Omar.

(iii) For all N € N, with W» denoting Wasserstein distance,

W22([:|(.|Z(N)), ”(‘|Z(N))) < exp(—N?/@a+d)).

o 11(-|Z™) is not Gaussian and non-asymptotic, thus not based on a
Bernstein-von-Mises or Laplace approximation.
e Key property: gradient stability of VG

VT VG(0)I320y 2 D "lIvIlgo, &>0, 0€B,
and regularity of G, VG, V3G.
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Extensions

Gradient stability and local computability results have been extended:
e Non-Abelian X-ray transforms [Bohr & Nickl (2021)]
e Darcy flow [Nickl (2022)]
e High-dimensional GLMs [Altmeyer (2022)]

Open questions:

e Numerical investigation
e Polynomial-time initialisation

e Beyond inverse problems?

18



I1. Lower bounds




A specific non-linear regression model

Consider data from random design regression

Yi = G(0)(Xi) + i, ei ~ N(0,1).

We choose the particular forward operator

G(0) = vV w(||fllzo) x &(-)-

w(r)

e w:[0,00) — R is a non-decreasing
univariate function.

i ) ) 0 02 : L
e g: O —[1,2] is an arbitrary smooth, fixed r

regression function. e 8 (FHuetion w

e Assume that D/N ~ x > 0.

[ Prior distribution: 6 ~ N(0, Id/D). ]
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Exponential lower bound for the hitting time of Markov chains

Theorem (Bandeira, Maillard, Nickl & W)
Suppose that G is as constructed before, with appropriate choice of constants.

There exists a fixed constant s € (0,1/3) such that:

(1) Posterior contraction: It holds that N({6 : ||0]| < s}|Z) N2 1 in
probability.

(2) Unimodality: The expected likelihood £(6) is unimodal with mode 0, locally
log-concave near 0 and monotonically decreasing in ||0||gp on RP.

(3) Exponential hitting time: For any Markov chain (¥« : k > 1) with ‘step size’
at most ¢ > 0, and for some initialisation point 9o € {6 : ||0||zp € (2/3,2)}, the
hitting time 7 = infx>1{||9«|| < s} is lower bounded with high probability:

Ts > exp (N/2).
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Lemma: posterior probability ratios of annuli

Let ©1, O, be two disjoint annuli
©1={0: 0| € [ss,m]}, ©2={6:]0]| € [s2,m2]},

for s1 <M1 < 52 < M2

Proposition (Posterior ratios)

Assume that the prior satisfies, for some constants v > 0 and
c=c(w) >0,

MN(©1)/M(02) < exp(—N(v — ¢)), (2.1)
for some ¢ > 0. Suppose that function w is ‘slowly increasing’ in the region
[s1,52 + m2]. Then, with high P}'-probability as N — oo,

N(©:11ZM)/N(©21Z™) < exp(—Nv).

e This holds even when the posterior is concentrating on a {|||| < s1}.
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A hitting time bound for Markov chains

Proposition (cf. Jerrum '03)
Let (9x : k € N) be any Markov chain with invariant measure yu = MN(-|Z™").

Suppose Vg is drawn from the conditional distribution u(-|©2). Denote by T the
hitting time of the Markov chain onto ©1. If

N(©:11Z2M)/N(©,|ZM) < exp(—Nv),

it holds that

Pr(r < K) < Ke ", K>0.
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Intuition for hitting time lower bound

warss dbisEbution (bl )

N
v l, 4{(
POST. PR
(Erpame

©; forms a ‘barrier’ for (local) Markov chains to go from ©; to B:.
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Extensions & Outlook

e ‘Matern’ Priors: Our results also encompass prior distributions M = N(0, X, )
with smoothness index o > d/2.

e Lower dimensional models: Usual choices to optimize ‘bias-variance tradeoff’
are D = o(N), while we crucially assumed D ~ N.

e PDE models: Do free entropy barriers exist in ‘real’ settings such as PDE
models?
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Proof overview

Empirical processes
(Talagrand, Dirksen) Curvatgre of

N, L

Local avg

curvature N

Contr. rate
-9 of posterior
Bayesian Convergence

Nonparametrics of MAP
(Ghosal, vd Vaart, Nickl)

Bakry-Emery
Dalalyan
Durmus-Moulines
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Description of algorithm

We now describe the key Langevin-type Markov chain (9« : k > 1).
Step |: Initialisation. We initialise the algorithm at some specific Yo = Qjnit, where

Oinit is computable ‘in polynomial time'.

Step II: Proxy likelihood construction. Construct a ‘proxy’ likelihood function Iy
around i,

In(0) := a(0)en(0) — g(0).

Here g : R? — R is globally convex, o : R® — R is a cut-off function. With high
probability, we will see that EN = /{n locally on

1
5= {0 € B [0 tolho < gy }
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Description of algorithm

The construction from Step Il induces a proxy posterior distribution,

#(01ZM) o VO 7r(0),  log#(0]ZM) = Fn(0) + log 7(6) + const.

Step Ill: Langevin-type Markov chain. For stepsize v > 0 and
£k ~4 N(0, Ipxp), define (¥4) with law P by

190 = einih
19;(+1 = Uk + vV |og7"r(19k|Z(N))+ vV27v€k+1.

It is the Euler discretisation of the (continuous-time) diffusion process on R”
dL; = Vlog #(L:|Z™M)dt + V2dW; t >0,

with invariant density 7(-|Z"), where W; is a D-dimensional Brownian motion.
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