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Bayesian computation

In this talk, we consider sampling from a D-dimensional posterior distribution

π(θ|Z (N)) ∝ e`N (θ)π(θ), θ ∈ RD ,

using Markov chain Monte Carlo (MCMC).

• π is prior distribution on RD .

• `N is log-likelihood function at sample size N.

• D is model dimension.

Sampling tasks are ubiquitous in high-dimensional Bayesian statistics, inverse

problems, data assimilation, etc.

This talk: Synthesis of statistical and computational theory.
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Main computational question

In complex models,

• D may grow with N (‘high-dimensional’).

• −`N may be complex (e.g. non-convex, multi-modal).

Fundamental question: Are high-dimensional Bayesian posterior distribu-

tions feasible to compute and if so, when?

Goals:

(A) Generate random variables ϑ ∈ RD with law L(ϑ) ≈ Π(θ|Z (N)),

(B) Compute ‘aspects’ of the posterior

• Functionals:
∫

Θ
H(θ)dΠ(θ|Z (N)) ∈ R.

• Posterior mean:
∫

Θ
θdΠ(θ|Z (N)) ∈ RD ,

• MAP estimate: θ̂MAP ∈ arg maxθ π(θ|Z (N))?

In this talk: ‘feasible’ computational cost = polynomial time.
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Popular approach: Markov Chain Monte Carlo

Basic idea: Generate ergodic Markov chain (ϑk : k = 0, 1, ...) on RD such that

Π(·|Z (N)) is the unique invariant distribution for (ϑk).

Tasks (A) and (B) are then naturally addressed:

(A) To approximate the posterior distribution, after some mixing time Jmix ,

L(ϑk) ≈ Π(·|Z (N)) for any k ≥ Jmix .

(B) To compute integrals, we can take ergodic averages,

1

J

Jmix+J∑
k=Jmix+1

H(ϑk) ≈
∫

Θ

H(θ)dΠ(θ|Z (N)), J ∈ N.

Question rephrased: How do Jmix , J depend on D and N?
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Inverse (regression) problem

Let O ⊆ Rd (bounded, d ≤ 3) and consider a forward map

G : RD → C(O), D ∈ N.

We consider (non-linear) G arising from some PDE model.

Regression data: We observe Z (N) = (Yi ,Xi )
N
i=1, where

Yi = G(θ)(Xi ) + εi , i = 1, ...,N,

and εi ∼i.i.d. N(0, 1), Xi ∼i.i.d. Uniform(O).

Prominent examples:

• Inverse problems [Stuart (2010)]

• Data assimilation [Majda & Harlim (2012), Reich & Cotter (2015)]
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Bayesian inference with Gaussian priors

Gaussian prior: Suppose θ ∼ N(0,Σ).

Posterior density:

π(θ|Z (N)) ∝ exp
[
− 1

2

N∑
i=1

(
Yi − G(θ)(Xi )

)2 − 1

2
θTΣ−1θ

]
.

Characteristics:

• Non-log-concavity. For nonlinear G, −`N may be non-convex.

• Spiked-ness. π(·|Z (N)) may be multimodal with local optima of depth O(N).

• Posterior consistency: the data becomes informative as N →∞ (and thus

D →∞).

Curse of dimensionality? Sampling may require exponential (in D,N) computation

[Bickel et al (2008), Rebeschini & van Handel (2015), Yang, Wainwright & Jordan (2016)]
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Theoretical guarantees for large D

I. Preconditioned Crank-Nicolson

• [Hairer, Stuart and Vollmer (2014)] prove dimension-independent ‘spectral gap’, but

exponential dependence on other parameters.

II. Langevin Monte Carlo

• Log-concave: [Dalalyan (2017), Durmus & Moulines (2017,2019)] derive bounds with

polynomial dependence on relevant parameters.

• Non-log-concave: [Vempala & Wibisono (2019)] use log-Sobolev assumptions, [Ma et

al. (2018) use convexity outside some Euclidean ball.

How to break the exponential vs. polynomial barrier? In the statistical

setting, have additional structure:

• Bayesian posterior contraction [Ghosal & van der Vaart ’17]. How much

can computation be localized?

• Bernstein-von Mises phenomenon / asymptotic normality, even for

non-linear problems [e.g. Nickl ’17].
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I. Upper bounds



A concrete example: Steady-state Schrödinger equation

Let O ⊆ Rd be bounded (d ≤ 3) and g : ∂O → (gmin,∞), gmin > 0, be given.

PDE solution map

G : f 7→ uf ≡ u, with

∆
2
u − fu = 0 on O,

u = g on ∂O.

• For sufficiently regular f : O → [0,∞), a unique solution uf ∈ C 2(O) exists by

elliptic PDE theory.

• G is nonlinear, as seen from the Feynman-Kac formula

uf (x) = Ex

[
g
(
XτO

)
e−

∫ τO
0 f (Xs )ds

]
,

where (Xt : t ≥ 0) is a d-dimensional Brownian motion started at x ∈ O with

exit time τO.

• Appears e.g. in photoacoustic tomography (PAT) [Bal and Uhlmann (2009)].
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The forward map G

We fix a parameterisation

θ 7→ fθ, fθ ≡ Φ ◦
( D∑

k=1

θkek
)
.

• Here (ek : k ≥ 1) are D eigenfunctions of the Dirichlet Laplacian.

• Φ : R→ (0,∞) is a ‘regular’ link function ensuring positivity .

The forward map is then given by

G : RD → C 2(O), θ 7→ G(fθ) ≡ ufθ .

In what follows, we assume Z (N) is drawn from PN
θ0

for some ground truth θ0 (not

necessarily θ0 ∈ RD).
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Existence of polynomial-time algorithm

Our first main result regards computation of the posterior mean,

EΠ[θ|Z (N)] =

∫
RD

θdΠ(θ|Z (N)).

Theorem (Nickl and W, 2020)
Grant mild regularity assumptions on model dimension D, the prior Π and

the ground truth θ0. For any P > 0 and precision level ε ≥ N−P , there

exists a sampling algorithm with polynomial computational cost

O(Nb1Db2ε−b3 ) (b1, b2, b3 > 0),

and whose output θ̂ε satisfies that with high probability (under the joint law

of the data Z (N) and the randomness of the algorithm),∥∥θ̂ε − EΠ[θ|Z (N)]
∥∥
RD ≤ ε.

10



Description of algorithm

The algorithm is a Langevin-type Markov chain (ϑk : k ≥ 0).

ϑ0 = θinit ,

ϑk+1 = ϑk + γ∇ log π̃(ϑk |Z (N)) +
√

2γξk+1,

• The initialiser θinit is computable in polynomial time,

• (ξk : k ≥ 1) are N(0, ID×D) random variables,

• π̃(·|Z (N)) is a log-concave ‘proxy’ posterior distribution,

π̃(θ|Z (N)) ∝ e
˜̀
N (θ)π(θ),

where ˜̀
N is a surrogate likelihood ˜̀

N = `N for
∥∥θ − θ0,D

∥∥
RD . D−4/d .

• π̃(θ|Z (N)) is constructed from the data in poly-time.
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Hypotheses for the next theorems

• Precision level: Let ε ≥ N−P (any P > 0 fixed).

• Dimension constraint:

D . Nd/(2α+d), α > 6.

• Bias: Suppose that θ0 is sufficiently well-approximated by θ0,D ∈ RD .

• Step size: For some a > 0 (e.g. when d = 3, a ≈ 8), set

γ = γε,D,N ' ε2D−aN−1.
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Concentration inequalities for ergodic averages

For a 1-Lipschitz function, H : RD → R, let

µ̂(H) =
1

J

Jmix+J∑
k=Jmix+1

H(ϑk).

Theorem (Nickl and W, 2020)
There exist constants gD,N,ε = O(Db1Nb2ε−b3 ) , b1, b2, b3 > 0 such that for

Jmix ≥ gD,N,ε and with high probability under the data,

PMCMC

(∣∣µ̂(H)− EΠ[H|Z (N)]
∣∣ ≥ ε) . exp(−J/gD,N,ε),

Hence, there exists η > 0 such that with high PN
θ0
× PMCMC -probability and

polynomially many iterates, ∥∥θ̄JJmix
− θ0

∥∥
RD . N−η.
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Convergence in Wasserstein distance

For probability measures µ1, µ2 on RD , define the Wasserstein-2 distance

W 2
2 (µ1, µ2) := inf

ν∈Γ(µ1,µ2)

∫
RD

‖θ1 − θ2‖2
RDdν(θ1, θ2).

Theorem (Nickl and W, 2020)
With high probability, the Markov chain (ϑk) with step size γε > 0 satisfies

that for all k ≥ 1,

W 2
2

(
L(ϑk),Π(·|Z (N))

)
. D2α/d(1− cγεND

−4/d)k
+

+ ε2,

and W 2
2

(
L(ϑk),Π(·|Z (N))

)
≤ 2ε2 for k ≥ kmix = O(Db1Nb2ε−b3 ).

• The term cγεND
−4/d can be thought of as a ‘spectral gap’.

• The error incurred by Euler discretisation and proxy construction is ≤ ε2.
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Computation of the MAP estimate

Theorem (Nickl and W, 2020)
Consider the gradient descent algorithm

ϑ0 = θinit , ϑk+1 = ϑk + γε∇ log π̃(ϑk |Z (N)).

Then, with high PN
θ0

-probability, we have∥∥ϑk − θ̂MAP

∥∥
RD .

(
1− c

D4/dγε

)k
for all k ≥ 1.

Moreover, for some constant η > 0 and any k ≥ gD,N = O(Db1Nb2 ),∥∥ϑk − θ0

∥∥
RD . N−η.

15



Key proof idea: ‘Gradient stability’ implies local curvature

Consider the expected negative likelihood

θ 7→ Eθ0 [−`(θ,Z)] :=
1

2
Eθ0 [(Y − G(θ)(X ))2].

In ‘regular’ models, the Hessian satisfies (for ‖v‖RD ≤ 1 and some norm ‖ · ‖∗)

vTEθ0 [−∇2`(θ,Z)]v = ‖vT∇G(θ)‖2
L2(O) + O(‖G(θ)− G(θ0)‖∗).

Thus, if there is a lower bound for ‖vT∇G(θ)‖2
L2(O), then one has local average

curvature

infθ∈B λmin

(
Eθ0 [−∇2`(θ,Z)]

)
≥ cmin > 0

on some neighbourhood B of θ0, whose size needs to be quantified.

• For Schrödinger model, we can verify this via elliptic PDE theory on a

neighbourhood of size diam(B) = D−4/d .
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Intermediate result: Globally log-concave Wasserstein approximation

Theorem (Nickl and W, 2020)
With probability 1− c exp(−c ′Nd/(2α+d)) under the data:

(i) The posterior density π(·|Z (N)) is locally log-concave on B and has a

unique mode θ̂MAP .

(ii) The proxy density π̃(·|Z (N)) is globally log-concave with unique mode

θ̂MAP .

(iii) For all N ∈ N, with W2 denoting Wasserstein distance,

W 2
2

(
Π̃(·|Z (N)),Π(·|Z (N))

)
≤ exp(−Nd/(2α+d)).

• Π̃(·|Z (N)) is not Gaussian and non-asymptotic, thus not based on a

Bernstein-von-Mises or Laplace approximation.

• Key property: gradient stability of ∇G

‖vT∇G(θ)‖2
L2(O) & D−κ‖v‖2

RD , κ > 0, θ ∈ B,

and regularity of G,∇G,∇2G.
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Extensions

Gradient stability and local computability results have been extended:

• Non-Abelian X-ray transforms [Bohr & Nickl (2021)]

• Darcy flow [Nickl (2022)]

• High-dimensional GLMs [Altmeyer (2022)]

Open questions:

• Numerical investigation

• Polynomial-time initialisation

• Beyond inverse problems?
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II. Lower bounds



A specific non-linear regression model

Consider data from random design regression

Yi = G(θ)(Xi ) + εi , εi ∼ N(0, 1).

We choose the particular forward operator

G(θ) =
√

w(‖θ‖RD )× g(·).

• w : [0,∞)→ R is a non-decreasing

univariate function.

• g : O → [1, 2] is an arbitrary smooth, fixed

regression function.

• Assume that D/N ' κ > 0.

Prior distribution: θ ∼ N(0, Id/D).

Figure 1: Function w.
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Exponential lower bound for the hitting time of Markov chains

Theorem (Bandeira, Maillard, Nickl & W)
Suppose that G is as constructed before, with appropriate choice of constants.

There exists a fixed constant s ∈ (0, 1/3) such that:

(1) Posterior contraction: It holds that Π({θ : ‖θ‖ ≤ s}|Z (N))
N→∞−−−−→ 1 in

probability.

(2) Unimodality: The expected likelihood `(θ) is unimodal with mode 0, locally

log-concave near 0 and monotonically decreasing in ‖θ‖RD on RD .

(3) Exponential hitting time: For any Markov chain (ϑk : k ≥ 1) with ‘step size’

at most c > 0, and for some initialisation point ϑ0 ∈ {θ : ‖θ‖RD ∈ (2/3, 2)}, the

hitting time τs = infk≥1{‖ϑk‖ ≤ s} is lower bounded with high probability:

τs ≥ exp
(
N/2

)
.
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Lemma: posterior probability ratios of annuli

Let Θ1,Θ2 be two disjoint annuli

Θ1 = {θ : ‖θ‖ ∈ [s1, η1]}, Θ2 = {θ : ‖θ‖ ∈ [s2, η2]},

for s1 < η1 < s2 < η2.

Proposition (Posterior ratios)

Assume that the prior satisfies, for some constants ν > 0 and

c = c(w) > 0,

Π(Θ1)/Π(Θ2) ≤ exp(−N(ν − c)), (2.1)

for some c > 0. Suppose that function w is ‘slowly increasing’ in the region

[s1, s2 + η2]. Then, with high PN
0 -probability as N →∞,

Π(Θ1|Z (N))/Π(Θ2|Z (N)) ≤ exp(−Nν).

• This holds even when the posterior is concentrating on a {‖θ‖ ≤ s1}.
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A hitting time bound for Markov chains

Proposition (cf. Jerrum ’03)
Let (ϑk : k ∈ N) be any Markov chain with invariant measure µ = Π(·|Z (N)).

Suppose ϑ0 is drawn from the conditional distribution µ(·|Θ2). Denote by τ the

hitting time of the Markov chain onto Θ1. If

Π(Θ1|Z (N))/Π(Θ2|Z (N)) ≤ exp(−Nν),

it holds that

Pr(τ ≤ K) ≤ Ke−Nν , K > 0.
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Intuition for hitting time lower bound

Θ1 forms a ‘barrier’ for (local) Markov chains to go from Θ2 to Bs .
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Extensions & Outlook

• ‘Matern’ Priors: Our results also encompass prior distributions Π = N(0,Σα)

with smoothness index α > d/2.

• Lower dimensional models: Usual choices to optimize ‘bias-variance tradeoff’

are D = o(N), while we crucially assumed D ' N.

• PDE models: Do free entropy barriers exist in ‘real’ settings such as PDE

models?
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Thank you for listening!
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Proof overview
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Description of algorithm

We now describe the key Langevin-type Markov chain (ϑk : k ≥ 1).

Step I: Initialisation. We initialise the algorithm at some specific ϑ0 = θinit , where

θinit is computable ‘in polynomial time’.

Step II: Proxy likelihood construction. Construct a ‘proxy’ likelihood function ˜̀
N

around θinit ,

˜̀
N(θ) := α(θ)`N(θ)− g(θ).

Here g : RD → R is globally convex, α : RD → R is a cut-off function. With high

probability, we will see that ˜̀
N = `N locally on

B :=
{
θ ∈ RD :

∥∥θ − θ0,D

∥∥
RD ≤

1

D4/d(logN)

}
.
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Description of algorithm

The construction from Step II induces a proxy posterior distribution,

π̃(θ|Z (N)) ∝ e
˜̀
N (θ)π(θ), log π̃(θ|Z (N)) = ˜̀

N(θ) + log π(θ) + const.

Step III: Langevin-type Markov chain. For stepsize γ > 0 and

ξk ∼i.i.d. N(0, ID×D), define (ϑk) with law P by

ϑ0 = θinit ,

ϑk+1 = ϑk + γ∇ log π̃(ϑk |Z (N)) +
√

2γξk+1.

It is the Euler discretisation of the (continuous-time) diffusion process on RD

dLt = ∇ log π̃(Lt |Z (N))dt +
√

2dWt t ≥ 0,

with invariant density π̃(·|ZN), where Wt is a D-dimensional Brownian motion.
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