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A key promise of democratic voting is that, by accounting for all constituents’ preferences, it produces

decisions that benefit the constituency overall. It is alarming, then, that all deterministic voting rules have

unbounded distortion: all such rules— even under reasonable conditions—will sometimes select outcomes

that yield essentially no value for constituents. In this paper, we show that this problem is mitigated by voters

being public-spirited: that is, when deciding how to rank alternatives, voters weigh the common good in

addition to their own interests. We first generalize the standard voting model to capture this public-spirited

voting behavior. In this model, we show that public-spirited voting can substantially— and in some senses,

monotonically— reduce the distortion of several voting rules. Notably, these results include the finding that

if voters are at all public-spirited, some voting rules have constant distortion in the number of alternatives.

Further, we demonstrate that these benefits are robust to adversarial conditions likely to exist in practice.

Taken together, our results suggest an implementable approach to improving the welfare outcomes of elections:

democratic deliberation, an already-mainstream practice that is believed to increase voters’ public spirit.
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1 INTRODUCTION
Consider an election with two alternatives, 𝑎 and 𝑏; of the 100 voters, 50 prefer 𝑎 to 𝑏 and 50 prefer

𝑏 to 𝑎. Since the preference profile is symmetric, let us assume that 𝑎 is elected. Although their

rankings are symmetric, voters may have highly asymmetric underlying intensities of preferences,

perhaps capturing that they are affected to differing degrees by the outcome of the election. We

capture these preference intensities with utilities, which can be interpreted as measuring the value

a voter gains from a given alternative. In this case, suppose the supporters of 𝑎 are affected similarly

by the alternatives, having utility 1 for 𝑎 and 0 for 𝑏, whereas the admirers of 𝑏 are, by comparison,

are affected much more disparately by the alternatives, having utilities 0 for 𝑎 and 100 for 𝑏.

From a societal benefit standpoint, 𝑏 would have been the better choice, as it would yield sub-

stantially more utility to voters overall. This intuition is captured by the utilitarian social welfare,

defined as the sum of voters’ utilities for a given alternative: 𝑎 (the winner) is severely suboptimal

in terms of this measure, its social welfare being 100 times lower than that of 𝑏 (the alternative

with optimal social welfare). This ratio can be made arbitrarily large by, say, making the supporters

of 𝑎 arbitrarily unaffected by the decision.

The simple example above implies an alarming conclusion: that any deterministic rankings-based

voting procedure will, in some instances, choose an alternative that yields arbitrarily suboptimal

value for the population. From a technical standpoint, this welfare loss arises due to information

lost between cardinal utilities and ordinal preferences; this was first observed by Procaccia and

Rosenschein [2006], who quantified this loss with the notion of distortion. Assuming voters report

rankings that are consistent with their underlying utilities, the distortion of a voting rule is the

worst-case (over latent utilities) ratio between the utilitarian social welfare of the highest-welfare

alternative and that of the elected alternative. By the example above, then, all deterministic voting

rules must have unbounded distortion.

A natural question, then, is: under what assumptions is the distortion bounded? The rich literature

on distortion— overviewed in an excellent recent survey by Anshelevich et al. [2021]— has largely

taken one of two approaches to achieving bounded distortion. One line of research, originating

from the work of Procaccia and Rosenschein [2006], assumes that each voter’s utilities sum to

1, thereby eliminating the possibility of voters being affected by widely differing degrees by the

decision. Another line of research, originating from the work of Anshelevich et al. [2018], assumes

that voters’ preferences are induced by distances in an underlying metric space.

Both of these lines of work rely on assumptions that restrict voters’ possible latent utilities (or

analogously in somemodels, costs). However, it is not clear whetherwe can rely on such assumptions

to hold in practice. This is perhaps most directly illustrated by the fact that the core problem in our

example above cannot be ruled out as a potential feature of real-world elections: the utilities are

such that there is a minority group that is much more affected by the issue than a majority group

with decisive voting power. Moreover, it seems unlikely that we can promote such conditions on

the utilities, because voters’ utilities— how much they fundamentally gain from a given election

outcome—would likely arise from features that are difficult to change with simple interventions.

In this paper, we take a different approach to attaining bounded distortion. This approach begins

from the realization that while underlying utilities like those in our example might unfortunately be

realistic, the behavioral model by which voters translate utilities into rankingsmight be too pessimistic.

The standard behavioral assumption made in the literature is that voters rank alternatives according

to only the order of their own utilities. However, as many social scientists have observed, this

model is unrealistic in a way that can potentially help us: voters can be public-spirited— that is,
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when they vote, they weigh not only how they themselves are impacted by each alternative, but

also each alternative impacts their society as a whole.
1
This behavior of balancing self and societal

interest can be captured in a natural generalization of the standard behavioral model of voters:

instead of ranking alternatives according to only their own utilities, a 𝛾-public spirited voter ranks

alternatives according to values that place weight 1 − 𝛾 on their own utilities, and weight 𝛾 on

each alternative’s utilitiarian social welfare. It is then intuitive why public spirited voting could

help decrease the distortion: it will cause voters to more highly rank higher-welfare alternatives,

potentially increasing the social welfare of the election winner.

While existing work suggests that voters are willing and able to be public-spirited, we need not

assume that these conditions are satisfied by default; instead, we can intentionally cultivate them

within the democratic process. One promising innovation on this front that is currently gaining

momentum globally
2
is democratic deliberation, summarized by Mendelberg [2002] as dialogues in

which “people rely on reasons that speak to the needs or principles of everyone affected by the

matter at hand.” This description of deliberation already alludes to some of its key potential benefits,

which roughly correspond to promoting our conditions. For instance, deliberation is theorized

to lead to “citizens [being] more enlightened about their own and others’ needs and experiences”

[Mendelberg, 2002]— akin to promoting more accurate estimates of alternatives’ welfares, and to

“an increased willingness to recognize community values and to compromise in the interest of the

common good” [Karpowitz and Mendelberg, 2011]— akin to promoting voters’ levels of public

spirit. These theorized benefits are supported by empirical evidence showing, for example, that

deliberation can increase public-spiritedness [Wang et al., 2020], lead to more egalitarian values

[Gastil et al., 2010], and increase empathy for members of social outgroups [Grönlund et al., 2017].

This evidence suggests that public-spirited voting behavior can be cultivated (or may already exist)

among voters. This motivates our research question, which, if answered affirmatively, would lead to

an actionable approach to decreasing deterministic voting rules’ otherwise unbounded distortion:

To what extent is public-spirited voting guaranteed to decrease the distortion, and for which

voting rules?
3

We aim to formally answer this question with the tools of social choice theory, as outlined in the

results and contributions below. In our analysis, we focus on deterministic voting rules, owing to

the several political hurdles to implementing randomized rules. We leave the study of randomized

rules in our model to future work.

1.1 Results and Contributions
Throughout the rest of the paper, we will often use PS to refer to the concept of public spirit.

1
Public-spirited behavior among voters has been demonstrated empirically [Kendall and Matsusaka, 2021, Zettler et al.,

2011] and has long featured in economic theories of how people make decisions [Becker, 1976, Kangas, 1997].

2
Democratic deliberation is commonly implemented through deliberative polls or citizens’ assemblies, of which hundreds

have been run in the past few years [Participedia, 2022]. Such processes have played a key role in major political decisions: for

example, citizens’ assemblies commissioned by Ireland’s national legislature recently led to amending the Irish constitution

on the issues of same-sex marriage and abortion [Irish Citizen’s Assembly Project, 2019].

3
A natural question here is, if constituents can learn alternatives’ social welfares via, e.g., deliberation, why can’t the election

designer learn these values and directly select the highest-welfare alternative? One reason is that the election designer

imposing such “complete” public spirit could be perceived as undemocratic and illegitimate. Underlying this point is the

premise that in a democracy, it is voters’ prerogative to decide how strongly to account for the social good, an interpretation

which views deliberation as a process of clarifying for voters how much public spirit their values dictate they should have.
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Section 2: A model of public-spirited voters. A precursor to answering the question above is

formally modeling public-spirited voting behavior. Our model is a simple generalization of the

standard model: voter 𝑖 has public spirit level 𝛾𝑖 ∈ [0, 1], where higher 𝛾𝑖 corresponds to more

public spirit. Then, voter 𝑖 ranks alternatives in order of their PS-value for each alternative 𝑎,

called 𝑣𝑖 (𝑎,𝜸 ,𝑈 ). This value is a convex combination of their utility 𝑢𝑖 (𝑎) and 𝑎’s social welfare
sw(𝑎,𝑈 )— the sum of all voters’ utilities for 𝑎, summarized in the utility matrix𝑈 :

𝑣𝑖 (𝑎,𝜸 ,𝑈 ) = (1 − 𝛾𝑖 )𝑢𝑖 (𝑎) + 𝛾𝑖 · sw(𝑎,𝑈 )/𝑛.

The standard behavioral model of voters is then the special case of our model where 𝛾𝑖 = 0 for all 𝑖 .

Section 3: Distortion bounds for voting rules. We begin by proving our key lemma, which

upper bounds the extent to which the social welfare of an alternative 𝑎 can exceed that of another

alternative 𝑏 —a bound which is decreasing in the fraction of voters who rank 𝑏 ahead of 𝑎 in the

election, along with the minimum level of public spirit among voters, 𝛾𝑚𝑖𝑛 := min𝑖 𝛾𝑖 . We then

use this result, plus other techniques, to give tight bounds on the distortion of several popular

voting rules. For consistency with the distortion literature, we consider these bounds asymptotic

in𝑚, the number of alternatives in the election. The main takeaway from these bounds is that

when voters have any public spirit (i.e., if 𝛾𝑚𝑖𝑛 > 0), several voting rules’ distortion drops from

unbounded to linear (for the rules Borda, Plurality, Maximin) or even constant (for the rules

Copeland and Slater). We emphasize that our bounds asymptotically— and for some settings

of 𝛾𝑚𝑖𝑛 , non-asymptotically— either match or beat those possible in both aforementioned models,

and moreover do so without any assumptions on voters’ underlying utilities.

Section 4: PS-Monotonicity. The upper and lower bounds we give in Section 3 are decreasing in

𝛾𝑚𝑖𝑛 , hinting at a weak form of PS-monotonicity— i.e., that the distortion decreases as voters’ public

spirit increases. Although it seems intuitive that this property should hold, we show that, while

some notions of PS-monotonicity are guaranteed, other natural notions do not hold. Working from

weaker to stronger notions, we show first that if public spirit increases uniformly among voters, then

the worst-case distortion of all voting rules decreases monotonically. Given that in reality voters’ 𝛾𝑖
levels are unlikely to be uniform, we then show that for Copeland and Plurality, the worst-case

distortion decreases even if voters’ public spirit is increased heterogeneously. This implies that

cultivating greater public spirit among any voters to any extent is guaranteed to decrease the

worst-case distortion over possible utility profiles — already a useful guarantee, since we cannot

observe voters’ initial levels of public spirit. Given that utilities are also unobservable, one might

hope that PS-monotonicity holds for all fixed utility matrices and initial levels of public spirit. We

soundly resolve this question by showing this is too much to hope for: applying classic axiomatic

impossibilities by Muller and Satterthwaite, we prove that no weakly unanimous, non-dictatorial

voting rule exhibits PS-monotonicity on an instance-by-instance basis.

Section 5: Robustness of distortion bounds. There are two key weaknesses, from a practical

perspective, of our upper bounds in the Section 3. First, they are vacuous if𝛾𝑚𝑖𝑛 = 0, and second, they

a priori rely on voters using accurate and internally-consistent values of the inputs to Equation (1),

𝛾𝑖 , 𝑢𝑖 (𝑎), and sw(𝑎,𝑈 ). We provide robustness results that address both of these gaps. First, we

show that our upper bounds degrade by only a constant factor if up to some fraction of voters has

𝛾𝑖 = 0; for Copeland this fraction is quite large—up to 1/2 of voters. Second, we generalize our

model to allow voters to deviate arbitrarily from correct and/or internally-consistent values of any

model input 𝛾𝑖 , 𝑢𝑖 (𝑎), and sw(𝑎,𝑈 ). We then extend our distortion upper bounds to this generalized

model, showing that our original bounds are robust to all such deviations: that is, our upper bounds

degrade smoothly, by constant factors, in the magnitude of these deviations.
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1.2 Related Work
Distortion under existing models. As discussed in the introduction, the main body of work

achieving bounded distortion does so by assuming regularity conditions on voters’ utilities. Under

the assumption that voters’ preferences can be embedded in a metric space, the well-known rule

Copeland has distortion of 5 and there are deterministic voting rules that achieve the best possible

distortion of 3 [Gkatzelis et al., 2020, Kizilkaya and Kempe, 2022]. Under the assumption that each

voter’s utilities sum to 1, all deterministic rules have distortion at least Ω(𝑚2), where 𝑚 is the

number of alternatives; the popular rule Plurality achieves a matching upper bound [Caragiannis

and Procaccia, 2011]. More distantly, there is some work that achieves bounded distortion by

assuming additional access to some cardinal information about voters’ utilities (see Sec. 5 of

Anshelevich et al. [2021] for an overview). In contrast to these lines of existing work, our distortion

bounds require neither regularity conditions on voters’ utilities, nor any information from voters

beyond their rankings. Nonetheless, we can match or improve upon the metric model’s upper bound

of 5 on Copeland’s distortion when 𝛾𝑚𝑖𝑛 ≥ (
√

5 − 1)/2 ≈ 0.61, and we can show that Plurality,

along with several other deterministic rules, have linear or sub-linear distortion, improving upon

the distortion achievable in the unit sum model by at least a factor of𝑚 (Table 1).

Related behavioral models. Our model of public-spirited voting is a direct analog of a model

used in the study of congestion games by Chen et al. [2014], who in turn attribute the idea to

Ledyard [1997, p. 154]. Additionally, similar ideas appear in literature exploring altruistic behavior

by agents in decision-making systems: for instance, Lindbeck and Weibull [1988] model agents as

giving some linear weight 𝛼 > 0 to the interests of another entity as a form of altruism. We remark,

however, that altruism in this work is distinct from public spirit, because it may involve accounting

for only the interests of population subgroups or specific agents for strategic reasons, rather than

arising from the motive of benefiting society at large. Similar ideas also appear in political economic

models of sociotropic voters, who weigh the economic interests of their country over their own

[Kinder and Kiewiet, 1981]. For instance, Bechtel and Liesch [2020] aim to estimate from data how

sociotropic voters are, corresponding to estimating 𝛾𝑖 parameters in our model.

2 MODEL
2.1 Public-Spirited Voting Behavior
There are 𝑛 voters and𝑚 alternatives. We refer to the set of voters as [𝑛] and alternatives as [𝑚].
By default, individual voters are denoted 𝑖 ∈ [𝑛] and individual alternatives are denoted 𝑎 ∈ [𝑚].

Public spirit (PS)We represent voters’ levels of public spirit with the PS-vector 𝜸 ∈ [0, 1]𝑛 , whose
𝑖-th entry 𝛾𝑖 is voter 𝑖’s level of public spirit (higher 𝛾𝑖 means more public spirit). Our upper bounds

will be in terms of the minimum level of public spirit possessed by any voter, 𝛾𝑚𝑖𝑛 := min𝑖∈[𝑛] 𝛾𝑖 .
We will also sometimes restrict our consideration to uniform PS-vectors 𝜸 = 𝛾1, in which all voters

have the same public spirit level 𝛾 ∈ [0, 1].

Utilities. We define a utility matrix 𝑈 ∈ [0, 1]𝑛×𝑚 to be a matrix whose (𝑖, 𝑎)-th entry is 𝑖’s utility

for alternative 𝑎, called 𝑢𝑖 (𝑎). Let sw(𝑎,𝑈 ) denote the utilitarian social welfare of 𝑎 based on𝑈 , i.e.,

sw(𝑎,𝑈 ) :=
∑
𝑖∈[𝑛]

𝑢𝑖 (𝑎).

When𝑈 is clear, we may denote the highest-welfare alternative in𝑈 as 𝑎∗ := argmax𝑎∈[𝑚] sw(𝑎,𝑈 ).

PS-values. Together, a pair 𝜸 ,𝑈 imply a PS-values matrix 𝑉 (𝜸 ,𝑈 ). This matrix contains the values

for alternatives by which voters decide how to vote. A voter 𝑖’s PS-value for 𝑎 weighs their own
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utility 𝑢𝑖 (𝑎) to a (1 − 𝛾𝑖 ) extent, and 𝑎’s social welfare sw(𝑎,𝑈 ) to a 𝛾𝑖 extent:

𝑣𝑖 (𝑎,𝜸 ,𝑈 ) = (1 − 𝛾𝑖 )𝑢𝑖 (𝑎) + 𝛾𝑖sw(𝑎,𝑈 )/𝑛. (1)

Note that sw(𝑎,𝑈 )/𝑛 is interpreted as voters’ average utility for 𝑎. Per this equation, the mathe-

matical interpretation of a voter’s public spirit level is the weight they place on the average utility

versus their own in this convex combination.

Rankings.A ranking 𝜋 is a permutation of [𝑚]. Voter 𝑖 expresses their preferences over alternatives
as a strict, complete ranking 𝜋𝑖 . We denote that 𝑖 ranks 𝑎 ahead of 𝑏 by 𝑎 ≻𝜋𝑖 𝑏. We say that 𝜋𝑖 ( 𝑗)
is the alternative that voter 𝑖 ranks in the 𝑗-th position.

Preference profiles. A preference profile 𝝅 is the 𝑛-tuple of all 𝑛 voters’ rankings: 𝝅 := (𝜋𝑖 : 𝑖 ∈
[𝑛]). We let Π be the set of all preference profiles. To compare how two alternatives’ relative

positions compare within a profile 𝝅 , we denote the number of voters in 𝝅 who prefer 𝑎 to 𝑏 as

|{𝑖 : 𝑎 ≻𝜋𝑖 𝑏}|. A pairwise election between 𝑎 and 𝑏 in 𝝅 compares |{𝑖 : 𝑎 ≻𝜋𝑖 𝑏}| and |{𝑖 : 𝑏 ≻𝜋𝑖 𝑎}|;
we say that 𝑎 pairwise-dominates 𝑏 if it wins this pairwise election, i.e., if |{𝑖 : 𝑎 ≻𝜋𝑖 𝑏}| > 𝑛/2, and

we add weakly if the inequality is weak. We say that 𝑎 is a Condorcet winner in 𝝅 if 𝑎 pairwise-

dominates all 𝑏 ≠ 𝑎 (noting that not all profiles have a Condorcet winner).

Translating instances to preference profiles. In any instance (𝜸 ,𝑈 ), its associated PS-values

matrix𝑉 (𝜸 ,𝑈 ) naturally implies a preference profile in which alternatives are ordered in decreasing

order of PS-value; formally, for any voter 𝑖 ,

𝑣𝑖 (𝑎,𝜸 ,𝑈 ) > 𝑣𝑖 (𝑏,𝜸 ,𝑈 ) =⇒ 𝑎 ≻𝜋𝑖 𝑏. (2)

We do not specify the ranking implied when 𝑣𝑖 (𝑎,𝜸 ,𝑈 ) = 𝑣𝑖 (𝑏,𝜸 ,𝑈 ); rather, we allow either ranking

to be consistent with such PS-values, and thus, there can be multiple profiles consistent with the

same 𝑉 (𝜸 ,𝑈 ). We let Π𝑉 (𝜸 ,𝑈 ) be the set of all profiles consistent with 𝑉 (𝜸 ,𝑈 ).

2.2 Voting Rules
A preference profile maps to a winning alternative via a (resolute) voting rule 𝑓 : Π → [𝑚]. Then,
𝑓 (𝝅) = 𝑎 means that on profile 𝝅 , rule 𝑓 chooses 𝑎 as the winner. We study two main classes of

voting rules, uncovered set rules and positional scoring rules, defined below.
4
All of our examples

will be strict, so we need not specify tie-breaking methods.

Uncovered Set Rules. The uncovered set of a given profile 𝝅 is the set of all alternatives 𝑎 such

that there is no 𝑏 that pairwise-dominates both 𝑎 and all alternatives pairwise-dominated by 𝑎.

Uncovered set rules are all voting rules whose winner lies in the uncovered set, for all profiles. From

this class, we primarily study the well-known rule Copeland, where the score of an alternative is

the number of alternatives it pairwise-dominates, and an alternative with maximum score is the

Copeland winner. We also study Slater, which selects the ranking that is inconsistent with the

outcomes of as few pairwise elections as possible.

Positional Scoring Rules. Positional scoring rules are defined by a score vector s of weakly
decreasing scores 𝑠1 ≥ · · · ≥ 𝑠𝑚 , where (without loss of generality) 𝑠1 = 1 and 𝑠𝑚 = 0. The winner

by positional scoring rule 𝑓s is the alternative that receives themost points, where𝑎 receives 𝑠 𝑗 points

for every voter that ranks it 𝑗th. We will study three standard positional scoring rules, Plurality

with score vector s = (1, 0, . . . , 0), Borda with score vector s = (1, 1 − 1/𝑚−1, 1 − 2/𝑚−1, . . . , 1/𝑚−1, 0),
and Veto with score vector s = (1, . . . , 1, 0). We will also define a new positional scoring rule

Piecewise in Section 3, which will achieve better distortion than any of the previous three.

4
The rules we study are standard, defined in, e.g., Conitzer [2006] (Slater) and Xia and Conitzer [2010] (all others).
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Other rules and axioms. We characterize one additional rule, Maximin, which chooses the

alternative with the lowest minimax score, defined for 𝑎 as the magnitude of 𝑎’s most severe

pairwise domination, i.e., max𝑎̃≠𝑎 |{𝑖 : 𝑎 ≻𝜋𝑖 𝑎}|. We also sometimes discuss the axiom Condorcet

consistency, where 𝑓 is Condorcet consistent if it selects the Condorcet winner in all profiles in

which one exists. Of the rules we study, Copeland, Slater, and Maximin are Condorcet consistent.

2.3 Distortion of Voting Rules
The distortion of a voting rule 𝑓 in an instance (𝜸 ,𝑈 ), called dist(𝑓 ,𝜸 ,𝑈 ), is the ratio between the

respective welfares of the highest-welfare alternative 𝑎∗ and the winner 𝑓 (𝝅). As is standard, we
use distortion, called dist(𝑓 ,𝜸 ), to mean the worst-case such ratio over all𝑈 (here, for a fixed 𝜸 ).

dist(𝑓 ,𝜸 ,𝑈 ) := sup

𝝅 ∈Π𝑉 (𝜸 ,𝑈 )

sw(𝑎∗,𝑈 )
sw(𝑓 (𝝅),𝑈 ) , and dist(𝑓 ,𝜸 ) := sup

𝑈 ∈R𝑛×𝑚≥0

dist(𝑓 ,𝜸 ,𝑈 ).

3 DISTORTION BOUNDS FOR VOTING RULES
We now analyze the distortion of several voting rules under the condition that 𝛾𝑚𝑖𝑛 , the minimum

level of public spirit among voters, is positive. First, in Section 3.1, we prove our key lemma,

which founds our analysis of specific voting rules and gives intuition for why public spirit should

limit the distortion. In Section 3.2, we will apply this lemma in various forms to upper-bound on

the distortion of several standard voting rules. Section 3.3 contains our lower bounds for these

rules, which match in almost all cases. We summarize these bounds in Table 1. Most include exact

constants; the few asymptotic results we give are asymptotic in𝑚, as is standard in the distortion

literature.

Rule Upper bounds Lower bounds

Uncovered set rules (2𝑧𝛾𝑚𝑖𝑛
+ 1)2

(Thm. 3.3)

Copeland (2𝑧𝛾𝑚𝑖𝑛
+ 1)2 (2𝑧𝛾 + 1)2

(Prop. 3.9)

Slater (2𝑧𝛾𝑚𝑖𝑛
+ 1)2 (2𝑧𝛾 + 1)2

(Prop. 3.10)

Positional scoring rules Ω(
√
𝑚) (Thm. 3.11)

Plurality 𝑚𝑧𝛾𝑚𝑖𝑛
+ 1 (Prop. 3.5) 𝑚𝑧𝛾 + 1 (Prop. 3.15)

Borda 𝑚𝑧𝛾𝑚𝑖𝑛
+ 1 (Prop. 3.6) (𝑚 − 1)𝑧𝛾 + 1 (Prop. 3.13)

Veto infinite (Prop. 3.14)

Piecewise 𝑂 (𝑚2/3) (Prop. 3.7) Ω(
√
𝑚)

Maximin 𝑚𝑧𝛾𝑚𝑖𝑛
+ 1 (Prop. 3.8) (𝑚 − 1)𝑧𝛾 + 1 (Prop. 3.16)

Table 1. Bounds on the distortion of voting rules. Upper bounds hold for all 𝜸 ; lower bounds hold for all
uniform 𝜸 = 𝛾1. As shorthand, we let 𝑧𝛾 = (1−𝛾 )/𝛾 . Gray-text results are inherited from more general results.

3.1 Key Lemma
Lemma 3.1. For all𝑈 , all alternatives 𝑎, 𝑏 with sw(𝑎,𝑈 ) > 0, all𝜸 with 𝛾𝑚𝑖𝑛 > 0, and all 𝝅 ∈ Π𝑉 (𝜸 ,𝑈 ) ,

sw(𝑏,𝑈 )
sw(𝑎,𝑈 ) ≤ 1 − 𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛

· 𝑛

|{𝑖 : 𝑎 ≻𝜋𝑖 𝑏}|
+ 1.
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Conceptually, Lemma 3.1 states that for arbitrary alternatives 𝑎, 𝑏, the more voters who rank 𝑎

ahead of 𝑏, the less the welfare of 𝑏 can exceed that of 𝑎 (assuming 𝛾𝑚𝑖𝑛 > 0). The intuition for the

proof, below, is that any voter 𝑖 who ranks 𝑎 ≻𝜋𝑖 𝑏 must have utility for 𝑎 that exceeds 𝑏 sufficiently

to close the countervailing gap sw(𝑏,𝑈 ) − sw(𝑎,𝑈 ), which is weighted by 𝛾𝑖 in 𝑖’s PS-value. This

fact implies a lower bound on 𝑖’s utility for 𝑎, which grows in 𝛾𝑖 ; summing over all voters 𝑖 , we get

a lower bound on sw(𝑎,𝑈 ) relative to sw(𝑏,𝑈 ), which grows stronger in 𝛾𝑚𝑖𝑛 .

Proof. Fix a 𝑈 , 𝜸 , and let 𝝅 ∈ Π𝑉 (𝜸 ,𝑈 ) . Let 𝑁𝑎≻𝑏 be the set of voters in 𝝅 who ranks 𝑎 ahead of 𝑏,

and let 𝑖 ∈ 𝑁𝑎≻𝑏 . The fact that 𝑎 ≻𝜋𝑖 𝑏 means that 𝑣𝑖 (𝑎,𝜸 ,𝑈 ) ≥ 𝑣𝑖 (𝑏,𝜸 ,𝑈 ), implying that

(1 − 𝛾𝑖 )𝑢𝑖 (𝑎) + 𝛾𝑖
sw(𝑎,𝑈 )

𝑛
= 𝑣𝑖 (𝑎,𝜸 ,𝑈 ) ≥ 𝑣𝑖 (𝑏,𝜸 ,𝑈 ) = (1 − 𝛾𝑖 )𝑢𝑖 (𝑏) + 𝛾𝑖

sw(𝑏,𝑈 )
𝑛

≥ 𝛾𝑖
sw(𝑏,𝑈 )

𝑛
.

Now, dividing both sides by 𝛾𝑖 and then adding up both sides over all 𝑖 ∈ 𝑁𝑎≻𝑏 :∑
𝑖∈𝑁𝑎≻𝑏

(
1 − 𝛾𝑖

𝛾𝑖
𝑢𝑖 (𝑎) +

sw(𝑎,𝑈 )
𝑛

)
≥

∑
𝑖∈𝑁𝑎≻𝑏

sw(𝑏,𝑈 )
𝑛

.

Using that
1−𝛾𝑖
𝛾𝑖

decreasing in 𝛾𝑖 and making simplifications,

=⇒ |𝑁𝑎≻𝑏 |/𝑛 · sw(𝑎,𝑈 ) + 1 − 𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛

∑
𝑖∈𝑁𝑎≻𝑏

𝑢𝑖 (𝑎) ≥ |𝑁𝑎≻𝑏 |/𝑛 · sw(𝑏,𝑈 ).

Finally, we use that

∑
𝑖∈𝑁𝑎≻𝑏 𝑢𝑖 (𝑎) ≤ sw(𝑎,𝑈 ) to conclude the claim. □

In the next sections, we will apply this lemma to upper bound the distortion of various voting rules.

Although we apply it in different ways across voting rules, the key idea is always the same: so

long as enough voters rank the election winner 𝑎′ ahead of the highest-welfare alternative 𝑎∗ (or
an alternative with social welfare comparable to 𝑎∗), then sw(𝑎∗,𝑈 ) cannot exceed sw(𝑎′,𝑈 ) by
more than a bounded amount, bounding the distortion. Intuitively, for “reasonable” voting rules,

the number of voters who prefer 𝑎′ to some such alternative should be lower-bounded— otherwise,

𝑎′ would not be the winner. We will formalize this intuition as we prove our upper bounds.

3.2 Upper bounds
3.2.1 Uncovered Set Rules. We will now show that, when 𝛾𝑚𝑖𝑛 is separated from 0, all uncovered

set rules—most notably including Copeland and Slater—have constant distortion. To prove

this, we apply Lemma 3.1 in two different ways: in the first case, we use it to directly compare 𝑎′,
the winner, and 𝑎∗. In the second and more interesting case, we apply the lemma twice, first to

compare 𝑎′ with some intermediate alternative 𝑎, and then to compare 𝑎 with 𝑎∗. The choice of
this intermediate alternative 𝑎 arises from a known

5
property of the uncovered set (Lemma 3.2):

Lemma 3.2 (Moulin 1986). If 𝑎′ is in the uncovered set then for all 𝑎 ≠ 𝑎′, 𝑎′ either weakly pairwise-

dominates 𝑎, or there exists some 𝑎′′ such that 𝑎′ weakly pairwise-dominates 𝑎′′ and 𝑎′′ weakly
pairwise-dominates 𝑎.

Theorem 3.3. For all uncovered set rules 𝑓 and all 𝜸 with 𝛾𝑚𝑖𝑛 > 0,

dist(𝑓 ,𝜸 ) ≤
(

2(1 − 𝛾𝑚𝑖𝑛)
𝛾𝑚𝑖𝑛

+ 1

)
2

.

5
Our framing slightly adapts the classic result [Moulin, 1986] to permit pairwise ties. We remark that this result was also

used to prove the constant distortion of uncovered set rules under metric preferences [Anshelevich et al., 2018, Thm. 5].
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Proof. Let 𝑓 be an uncovered set rule, and fix arbitrary 𝑈 , 𝜸 and 𝝅 ∈ Π𝑉 (𝜸 ,𝑈 ) . Let 𝑎
∗
be the

highest-welfare alternative in𝑈 , and let 𝑎′ be the winner by 𝑓 , i.e., 𝑎′ = 𝑓 (𝝅). Then, we know 𝑎′

is in the uncovered set. If 𝑎′ weakly pairwise-dominates 𝑎∗, then |{𝑖 : 𝑎′ ≻𝜋𝑖 𝑎
∗}|/𝑛 ≥ 1/2 and by

applying Lemma 3.1 with 𝑎′ = 𝑎, 𝑎∗ = 𝑏, we immediately obtain an upper bound stronger than the

claim. Else, by Lemma 3.2, there exists some 𝑎 such that 𝑎′ weakly pairwise-dominates 𝑎, and 𝑎

weakly pairwise-dominates 𝑎∗. Fix this 𝑎. Then, by Lemma 3.1, both sw(𝑎∗)/sw(𝑎) and sw(𝑎)/sw(𝑎′) are
at most 2(1−𝛾𝑚𝑖𝑛)/𝛾𝑚𝑖𝑛 + 1. Multiplying these inequalities implies the claim. □

3.2.2 Positional scoring rules. In giving upper bounds on the distortion of positional scoring rules,

we will establish an upper bound on the distortion of all voting rules — one which will turn out to

be tight for not only key positional scoring rules, but also some Condorcet consistent rules (e.g.,

Maximin, as analyzed in Section 3.2.3). This upper bound will be a corollary of Lemma 3.1, derived

by using the lemma to compare the social welfares of 𝑎′ directly with 𝑎∗.

Formally, we deduce this corollary by plugging in 𝑎 = 𝑓 (𝝅) (for any 𝝅 ∈ Π𝑉 (𝜸 ,𝑈 ) ) and 𝑏 = 𝑎∗.
Then, for a given 𝑓 , we need only to bound the quantity |{𝑖 : 𝑓 (𝝅) ≻𝜋𝑖 𝑎

∗}|/𝑛. We thus define the

parameter 𝜅𝑓 (𝑚), the minimum fraction of voters who must rank the winner 𝑓 (𝝅) ahead of any

other given alternative, in any profile 𝝅 .

𝜅𝑓 (𝑚) := min

𝝅
min

𝑎≠𝑓 (𝝅 )
|{𝑖 : 𝑓 (𝝅) ≻𝜋𝑖 𝑎}|/𝑛. (3)

Although we express this quantity as a function of𝑚, for brevity, we will often write it as 𝜅𝑓 . For

a fixed 𝑓 , we then have by definition that |{𝑖 : 𝑓 (𝝅) ≻𝜋𝑖 𝑎
∗}|/𝑛 ≥ 𝜅𝑓 for all instances (𝜸 ,𝑈 ) and

corresponding 𝝅 ∈ Π𝑉 (𝜸 ,𝑈 ) , as needed. From this we conclude the following corollary of Lemma 3.1,

which we emphasize is an upper bound on the distortion of any voting rule 𝑓 :

Corollary 3.4 (Universal Upper Bound). For all rules 𝑓 and all 𝜸 with 𝛾𝑚𝑖𝑛 > 0,

dist(𝑓 ,𝜸 ) ≤ 1 − 𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛 · 𝜅𝑓
+ 1.

To apply this corollary to upper bound the distortion of a specific 𝑓 , we must simply lower bound

𝜅𝑓 . One useful observation, before doing so, is that for all 𝑓 , 𝜅𝑓 ≤ 1/𝑚; thus, Corollary 3.4 can be

used to prove linear distortion at best.
6

Now, we prove upper bounds on the standard positional scoring rules Borda and Plurality by

characterizing their respective 𝜅𝑓 values and applying Corollary 3.4:

Proposition 3.5. 𝜅Plurality = 1/𝑚, so for all 𝜸 with 𝛾𝑚𝑖𝑛 > 0, dist(Plurality,𝜸 ) ≤ 𝑚
1−𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛
+ 1.

Proposition 3.6. 𝜅Borda = 1/𝑚, so for all 𝜸 with 𝛾𝑚𝑖𝑛 > 0, dist(Borda,𝜸 ) ≤ 𝑚
1−𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛
+ 1.

For Veto, we cannot apply the same approach, because 𝜅Veto is 1/𝑛 — i.e., there exists an instance

in which just one voter must rank the winner ahead of any other alternative— and thus the upper

bound given by Corollary 3.4 is unbounded in 𝑛. It will turn out that, as Corollary 3.4 would suggest,

the distortion of Veto is truly unbounded, shown via an instance in which the Veto-winner is

almost never ranked ahead of the highest-welfare alternative.

6
To see why 𝜅𝑓 ≤ 1/𝑚 for all 𝑓 , divide [𝑛] into𝑚 equal-sized groups𝐺1, ...,𝐺𝑚 . Then, for each group𝐺𝑘 , suppose the

voters have rankings 𝑘 ≻ 𝑘 + 1 ≻ ... ≻ 𝑚 ≻ 1 ≻ ...𝑘 − 1. In this case, every alternative’s worst pairwise defeat is to be

ranked behind another alternative by an (𝑚 − 1)/𝑚 voters. Hence, 𝜅𝑓 ≤ 1/𝑚.
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So far, we have not found a positional scoring rule that has sub-linear distortion, prompting the

question: does one exist? We answer this question in the affirmative with Piecewise, a voting rule

we newly define. It can be seen as a hybrid of Plurality and Borda, defined by a score vector

with𝑚2/3
non-zero entries: s =

(
1, 1− 1/𝑚2/3, 1− 2/𝑚2/3, . . . , 1/𝑚2/3, 0, . . . , 0

)
. We now show that, when

𝛾𝑚𝑖𝑛 is any nonzero constant, Piecewise suffers at most 𝑂 (𝑚2/3) distortion. Here, we depart from
the approach of directly applying Corollary 3.4 (as we must in order to obtain a sub-linear bound).

Proposition 3.7. For all 𝜸 with (fixed) 𝛾𝑚𝑖𝑛 > 0, dist(Piecewise,𝜸 ) ∈ 𝑂 (𝑚2/3).
The proof of this proposition, found in Appendix A.4, again applies our key lemma, but in a more

intricate fashion than in the preceding bounds. Similarly to the proof of Theorem 3.3, the argument

considers one case comparing the Piecewise winner 𝑎′ directly to 𝑎∗, and another comparing 𝑎′

to some intermediate alternative(s) other than 𝑎∗. The first case is invoked in profiles where at

least half of voters rank 𝑎∗ in the first𝑚2/3
positions; then, normalizing 𝑎∗’s social welfare to be

constant, 𝑎′ must have social welfare Ω(𝑚−2/3) in order to win the election. In the second case,

over half the voters must rank 𝑎∗ in the last 𝑚 −𝑚2/3
positions, implying that each of these voters

must rank at least𝑚2/3
many alternatives ahead of 𝑎∗. In order for 𝑎′ to win the election over these

other alternatives, 𝑎′ must again have social welfare Ω(𝑚−2/3).

3.2.3 Maximin. Given that 𝜅𝑓 is not meaningfully lower-bounded for Copeland and Slater

(indeed, per the instance giving Proposition 3.9, it can be arbitrarily small), one might think that this

is the case for all Condorcet consistent rules. On the contrary, here we show that 𝜅Maximin = 1/𝑚,

and thus Corollary 3.4 gives a useful distortion upper bound for Maximin— in fact, it will turn out

that this upper bound is tight. The proof of this proposition is found in Appendix A.5.

Proposition 3.8. 𝜅Maximin = 1/𝑚, so for all 𝜸 with 𝛾𝑚𝑖𝑛 > 0, dist(Maximin,𝜸 ) ≤ 𝑚
1−𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛
+ 1.

3.3 Lower bounds
We give matching lower bounds for all voting rules analyzed in Section 3.2 except Piecewise.

However, a lower bound on Piecewise of Ω(
√
𝑚) (thus leaving an asymptotic gap of 𝑚1/6

) is

implied by Theorem 3.11, which shows that even when voters are public-spirited, all positional

scoring rules must suffer at least Ω(
√
𝑚) distortion. The proofs of all our lower bounds proceed

by fixing an arbitrary uniform PS-vector 𝜸 = 𝛾1, and then constructing a utility matrix𝑈 whose

entries depend on 𝛾 , in which the election winner 𝑎′ has far lower social welfare than 𝑎∗.

3.3.1 Uncovered set rules.

Proposition 3.9. For all uniform 𝜸 = 𝛾1, 𝛾 ∈ [0, 1], dist(Copeland,𝜸 ) ≥
(

2(1−𝛾 )
𝛾

+ 1

)
2

.

Proposition 3.10. For all uniform 𝜸 = 𝛾1, 𝛾 ∈ [0, 1], dist(Slater,𝜸 ) ≥
(

2(1−𝛾 )
𝛾

+ 1

)
2

.

The proofs of these propositions are found in Appendices A.6 and A.7, respectively. Both use

the same instance, constructed so that 𝑎′ pairwise-dominates every alternative except 𝑎∗, and 𝑎∗

pairwise-dominates all but two alternatives, 𝑎1, 𝑎2 ≠ 𝑎′. (We use two such alternatives here only

to ensure that 𝑎∗ is not contained in the uncovered set, and thus the winner 𝑎′ is unique. Proving
the bound requires reasoning about 𝑎1 or 𝑎2; here, we explain the bound via 𝑎1.) Normalizing the

average utility of 𝑎∗ to be 1, observe that because at least half of voters rank 𝑎1 ahead of 𝑎∗, 𝑎1

must have average utility at least 2(1−𝛾 )/𝛾 . In turn, because at least half of voters rank 𝑎′ ahead of 𝑎1,

𝑎′ must have average utility of at least (2(1−𝛾 )/𝛾)2

. Then, the 𝑈 that minimizes 𝑎′’s social welfare
relative to 𝑎∗ while also realizing the above profile makes all these inequalities tight, giving the

lower bound.
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3.3.2 Positional scoring rules. First, in Theorem 3.11, we show that whenever𝛾𝑚𝑖𝑛 < 1, all positional

scoring rules must have distortion at least Ω(
√
𝑚). Note that this result implies a fundamental

separation between positional scoring rules and uncovered set rules, which per Theorem 3.3 have

at most constant distortion for fixed values of 𝛾𝑚𝑖𝑛 > 0.

Theorem 3.11. For all positional scoring rules 𝑓 and uniform 𝜸 = 𝛾1 with (fixed) 𝛾 ∈ [0, 1),

dist(𝑓 ,𝜸 ) ∈ Ω(
√
𝑚).

The key observation underlying this lower bound, proven formally in Appendix A.8, is that in any

positional scoring rule’s score vector, there exists some position 𝑡 amongst the first

√
𝑚 entries in the

score vector— that is, 𝑡 ∈ {1, . . . ,
√
𝑚}— such that the gap 𝑠𝑡 − 𝑠𝑡+1 between the scores for positions

𝑡 and 𝑡 + 1 is at most 1/
√
𝑚 (this is simply by averaging). Then, for fixed 𝛾 and corresponding

PS-vector 𝜸 = 𝛾1, one can use this fact to construct an instance (𝜸 ,𝑈 ) which realizes order-

√
𝑚

distortion. The construction works as follows: Divide voters into two groups, a small group of size

𝑂 (1/
√
𝑚), and the remainder of the electorate. Let all voters in the larger group rank 𝑎∗ in the 𝑡-th

position and the winner 𝑎′ in the (𝑡 + 1)-st position. In the small group, 𝑎′ is ranked first and 𝑎∗ is
ranked last, thereby compensating for 𝑎′’s ‘scoring’ deficit in the larger group and allowing it to

win the election. Because 𝑎′ is so rarely ranked ahead of 𝑎∗ in this profile, it can be realized by a

utility matrix in which 𝑎∗ has constant average utility, while all voters have utility 𝑂 (1/
√
𝑚) for

the winner 𝑎′, resulting in a distortion of order 𝑂 (
√
𝑚).

It turns out that many positional scoring rules have distortion far exceeding Ω(
√
𝑚) distortion;

this is true, for instance, for all voting rules with a small value of Δ𝑓 := 𝑠1 − 𝑠2, the gap in scores of

the first two ranking positions:

Lemma 3.12. For all positional scoring rules 𝑓 and uniform 𝜸 = 𝛾1, 𝛾 ∈ [0, 1], dist(𝑓 ,𝜸 ) ≥ 1−𝛾
𝛾Δ𝑓

+ 1.

In the proof of this proposition, found in Appendix A.9, we again construct an instance in which as

few voters as possible rank the winner 𝑎′ ahead of 𝑎∗. To illustrate why smaller Δ𝑓 permits fewer

voters to rank 𝑎′ ahead of 𝑎∗, we will describe this construction. Divide voters into two groups:

voters in the first group rank 𝑎′ first and 𝑎∗ last, and voters in the second group rank 𝑎∗ and 𝑎′

adjacently over the first two positions. In order for 𝑎′ to win this election, the first group must

contain at least Δ𝑓 voters; moreover, only these voters must have non-negligible utility for 𝑎′. Note
that the use of the gap over the first two positions is essential: if we placed 𝑎∗ ≻ 𝑎′ over a smaller

adjacent gap elsewhere, 𝑎′ would be ranked below several other alternatives by many voters, and

we could no longer guarantee that it wins the election.

We can now directly apply Lemma 3.12 to lower bound the distortion of Borda and Veto, using

that ΔBorda = 1/(𝑚 − 1) and ΔVeto = 0.

Proposition 3.13. For all uniform 𝜸 = 𝛾1, 𝛾 ∈ [0, 1], dist(Borda,𝜸 ) ≥ (𝑚 − 1) · 1−𝛾
𝛾

+ 1.

Proposition 3.14. For all uniform 𝜸 = 𝛾1, 𝛾 ∈ [0, 1], dist(Veto,𝜸 ) = ∞.

For Plurality, ΔPlurality = 1, so Lemma 3.12 does not give a useful lower bound. However, we can

get a tight lower bound using a similar construction: We let a 1/𝑚 + 𝜖 fraction of voters rank 𝑎′

first, and all other voters rank 𝑎′ last. Only the former group of voters must have non-negligible

utility for 𝑎′, while all other alternatives can receive non-negligible utility from the much larger

second group of voters, yielding linear distortion. The full proof is found in Appendix A.10.

Proposition 3.15. For all uniform 𝜸 = 𝛾1, 𝛾 ∈ [0, 1], dist(Plurality,𝜸 ) ≥ 𝑚 · 1−𝛾
𝛾

+ 1.
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3.3.3 Maximin. Finally, we show that our upper bound on Maximin’s distortion was, indeed, tight.

Proposition 3.16. For all uniform 𝜸 = 𝛾1, dist(Maximin,𝜸 ) ≥ (𝑚 − 1) · 1−𝛾
𝛾

+ 1.

The formal proof of this proposition is found in Appendix A.11. The construction is somewhat

involved, but it intuitively works as follows: voters are divided into two groups. In Group 1,

containing a 1/(𝑚 − 1) fraction of voters, the election winner 𝑎′ is ranked first; in Group 2,

composed of the remaining voters, 𝑎′ is ranked last. The relative ranking of alternatives other than

𝑎′ is ‘cyclical’ — that is, all voters order them identically, up to a shift. There are𝑚 − 1 possible

such shifts, and each shifted ranking occupies a 1/(𝑚 − 1) fraction of the voters. In this profile, 𝑎′’s
greatest pairwise defeat is by (𝑚 − 2)/(𝑚 − 1) fraction of voters, and the cyclical treatment of all

other alternatives ensures that each suffers a pairwise defeat at least as severe as 𝑎′, making 𝑎′ the
winner. This profile can be realized with a utility matrix in which all alternatives besides 𝑎′ get
utility 1 from all voters in Group 2, while 𝑎′ only gets utility from Group 1.

4 PS-MONOTONICITY
Given that increasing voters’ public spirit can only promote higher-welfare alternatives in their

rankings, it seems natural that distortion should decrease as voters’ public spirit increases. We refer

to this general property of voting rules— decreasing distortion with increasing public spirit — as

public-spirit monotonicity (for short, PS-monotonicity). Our upper (and matching lower) bounds

from Section 3 already hint at a weak form of PS-monotonicity, as they are decreasing in 𝛾𝑚𝑖𝑛 .

In this section, we pursue stronger forms of PS-monotonicity, which ask for monotonicity not just

in 𝛾𝑚𝑖𝑛 , but in voters’ individual levels of public spirit. To this end, we define and analyze three

notions of PS-monotonicity, from weakest to strongest. We first study uniform PS-monotonicity,

which requires that distortion decreases as public spirit increases uniformly across voters. We find

that this property holds for all voting rules— i.e., it is a fundamental property of the model. We

next study a much stronger notion, nonuniform PS-monotonicity, which requires that the distortion

decreases as voters’ public spirit increases heterogeneously. We show that this notion holds for all

voting rules when𝑚 ≤ 3, and it holds for arbitrary𝑚 for Copeland and Plurality.

These first two notions examine monotonicity in the worst-case distortion. Even more optimistically,

one might hope that public spirit would decrease the distortion on an instance-wise basis: i.e. in a

fixed instance, if all voters’ public spirit levels weakly increase, the welfare of the chosen outcome

should only increase. We refer to this property as instance-wise PS-monotonicity. Unfortunately, we

prove via classical voting axioms that no reasonable voting rule satisfies this notion: specifically, any

weakly unanimous voting rule that satisfies instance-wise PS-monotonicity must be a dictatorship.

4.1 Uniform PS-monotonicity

Definition 4.1 (Uniform PS-monotonicity). A voting rule 𝑓 exhibits uniform PS-monotonicity if, for

all 𝛾 ′ ≥ 𝛾 and associated uniform 𝜸 = 𝛾1,𝜸 ′ = 𝛾 ′1, dist(𝑓 ,𝜸 ′) ≤ dist(𝑓 ,𝜸 ).

Theorem 4.2. All voting rules are uniform PS-monotonic.

Proof. We will prove this theorem by showing that, given arbitrary 𝑈 and 𝛾big ≥ 𝛾small, we can

find 𝑈̃ such that dist(𝑓 , 𝛾big,𝑈 ) = dist(𝑓 , 𝛾small, 𝑈̃ ): roughly, under a lower level of public spirit,
there exists a utility matrix with distortion at least as high. In fact, this distortion-preserving 𝑈̃
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will simply be𝑈 with some carefully-chosen amount of public spirit applied:

𝑈̃ := 𝑉 (𝛾∗,𝑈 ), where 𝛾∗ :=
𝛾big − 𝛾small

1 − 𝛾small

. (4)

We begin by considering two 𝑛×𝑚 matrices:𝑈 (which we can interpret as a matrix) and𝑊𝑈 , whose

columns contain the column sums of𝑈 :

𝑊𝑈 =


sw(𝑎1,𝑈 )/𝑛 . . . sw(𝑎𝑚𝑈 )/𝑛

...
...

sw(𝑎1,𝑈 )/𝑛 . . . sw(𝑎𝑚,𝑈 )/𝑛

 .
We think of applying an arbitrary 𝛾 to𝑈 as a linear transformation on𝑈 , where varying 𝛾 from 0

to 1 interpolates between the matrices𝑈 and𝑊𝑈 : applying 𝛾 = 0 returns𝑈 , applying 𝛾 = 1 returns

𝑊𝑈 , and there is an infinite sequence of matrices in between ranging over 𝛾 ∈ [0, 1], where the
𝛾-th matrix is equal to a convex combination of𝑈 and𝑊𝑈 — that is, 𝑉 (𝛾,𝑈 ) = (1 − 𝛾)𝑈 + 𝛾𝑊𝑈 .

A key property of this transformation is that it is column-sum-preserving, so all matrices in this

sequence have the same column sums; that is, for all 𝛾 ∈ [0, 1],𝑊𝑉 (𝛾,𝑈 ) =𝑊𝑈 . We use this fact to

make the general observation that applying public spirit 𝛾1 and then 𝛾2 in succession is the same as

applying 𝛾1 + 𝛾2 − 𝛾1𝛾2 public spirit all at once:

Lemma 4.3. For arbitrary𝑈 and arbitrary 𝛾1, 𝛾2 ∈ [0, 1], 𝑉 (𝛾2,𝑉 (𝛾1,𝑈 )) = 𝑉 (𝛾1 + 𝛾2 − 𝛾1𝛾2,𝑈 ).

Proof of Lemma 4.3:

𝑉 (𝛾2,𝑉 (𝛾1,𝑈 )) = 𝛾2𝑊𝑉 (𝛾1,𝑈 ) + (1 − 𝛾2)𝑉 (𝛾1,𝑈 )
= 𝛾2𝑊𝑉 (𝛾1,𝑈 ) + (1 − 𝛾2)

(
(1 − 𝛾1)𝑈 + 𝛾1𝑊𝑈

)
= 𝛾2𝑊𝑈 + (1 − 𝛾2) ((1 − 𝛾1)𝑈 + 𝛾1𝑊𝑈 )
= (1 − 𝛾1) (1 − 𝛾2)𝑈 +

(
𝛾1 + 𝛾2 − 𝛾1𝛾2

)
𝑊𝑈

= 𝑉 (𝛾1 + 𝛾2 − 𝛾1𝛾2,𝑈 ) □

Because applying public spirit is column-sum-preserving, we can set 𝑈̃ to any matrix 𝑉 (𝛾,𝑈 ),
𝛾 ∈ [0, 1] and be certain that 𝑈̃ will give the same welfares to all alternatives as𝑈 . We will carefully

choose this 𝛾 = 𝛾∗ according to Lemma 4.3: 𝛾∗ = 𝛾1, 𝛾small = 𝛾2, and 𝛾big = 𝛾1 + 𝛾2 − 𝛾1𝛾2, which

means setting 𝛾∗ as in Equation (4). This setting of 𝛾∗ then ensures that the rankings are preserved:

𝑉 (𝛾small,𝑉 (𝛾∗,𝑈 )) = 𝑉 (𝛾big,𝑈 ) =⇒ Π𝑉 (𝛾small,𝑈̃ ) = Π𝑉 (𝛾big,𝑈 ) .

Thus, across (𝑈 ,𝛾big) and (𝑈̃ , 𝛾small), the rankings (and therefore the winner) and social welfares

are identical. The distortion must then be the same across the instances, proving the claim. □

4.2 Nonuniform PS-monotonicity
Here, we define the ordering of vectors in the standard way: 𝜸 ′ ≥ 𝜸 iff 𝛾 ′

𝑖 ≥ 𝛾𝑖 for all 𝑖 ∈ [𝑛].

Definition 4.4 (Nonuniform PS-monotonicity). A voting rule 𝑓 exhibits nonuniform PS-monotonicity

if for all 𝜸 ,𝜸 ′
where 𝜸 ′ ≥ 𝜸 , dist(𝑓 ,𝜸 ′) ≤ dist(𝑓 ,𝜸 ).

First, we show that nonuniform PS-monotonicity holds for all voting rules when𝑚 ≤ 3.

Proposition 4.5. If𝑚 ≤ 3, then all voting rules exhibit nonuniform monotonicity.
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We defer the proof of this proposition to Appendix B.1, as it is fairly involved. The main intuition

behind the proof is as follows: If𝑈 is a utility matrix,𝜸 is some PS-vector and 𝜸̃ arises from lowering

an entry in 𝜸 , then we can explicitly construct another utility matrix 𝑈̃ such that the profile(s)

implied by (𝜸 ,𝑈 ) and (𝜸̃ , 𝑈̃ ) are identical (i.e., Π𝑉 (𝜸 ,𝑈 ) = Π𝑉 (𝜸̃ ,𝑈̃ ) ), and the social welfares of all

alternatives are preserved (i.e., sw(𝑎,𝑈 ) = sw(𝑎, 𝑈̃ ) for all 𝑎). Across these instances, the election
winner, and thus the distortion, must be the same.

The construction used to show Proposition 4.5 is already considerably complicated when𝑚 = 3;

proving the claim for all (or a broad class of) voting rules when𝑚 ≥ 4 remains an interesting open

problem. However, we do affirmatively resolve this question for two specific voting rules, showing

that Copeland and Plurality both satisfy nonuniform PS-monotonicity for arbitrary𝑚.

Proposition 4.6. Copeland is nonuniform PS-monotonic.

Proposition 4.7. Plurality is nonuniform PS-monotonic.

These propositions are proven in Appendices B.2 and B.3, respectively. Although the constructions

used to analyze Copeland and Plurality are different, both reflect the argument from Proposi-

tion 4.5: given 𝑈 ,𝜸 , 𝜸̃ where 𝜸̃ ≤ 𝜸 , we construct a 𝑈̃ such that the election winner and welfares

are preserved instances. Note that these arguments can be simpler than the proof of Proposition 4.5

because, given that we are not reasoning about all voting rules, preserving these features across

instances does not necessitate preserving the full preference profile. As such, in the analysis of

Copeland, 𝑈̃ just preserves the relevant aspects of the uncovered set; in the analysis of Plurality,

𝑈̃ just preserves the first-ranked alternatives.

4.3 Instance-wise PS-Monotonicity

Definition 4.8 (Instance-wise PS-monotonicity). A voting rule 𝑓 is instance-wise PS-monotonic iff, for

all𝑈 and all 𝜸 ,𝜸 ′
where 𝜸 ′ ≥ 𝜸 , dist(𝑓 ,𝜸 ′,𝑈 ) ≤ dist(𝑓 ,𝜸 ,𝑈 ).

Unfortunately, Theorem 4.11 shows that no reasonable— i.e., weakly unanimous (Definition 4.9) and

non-dictatorial (Definition 4.10) — voting rule satisfies this property. Although the proof is involved,

the intuition is simple: consider three alternatives in order of decreasing welfare, 𝑎, 𝑏, 𝑐 . Suppose

𝑎 wins initially, but after increasing voters’ public spirit, all voters promote 𝑏 over 𝑐 but no other

relative rankings change. For any monotonic and otherwise reasonable voting rule, 𝑏 —whose

welfare is lower than 𝑎’s —must in some cases be able to become the winner.

Definition 4.9 (weakly unanimous). A voting rule 𝑓 is weakly unanimous iff for every profile 𝝅 , if
there is a pair of alternatives 𝑎, 𝑏 such that 𝑎 ≻𝜋𝑖 𝑏 for all voters 𝑖 , then 𝑓 (𝝅) ≠ 𝑎.

Definition 4.10 (dictatorship). Voter 𝑖 is a dictator with respect to 𝑓 if 𝑓 always selects 𝑖’s top choice:

for every profile 𝝅 , 𝑓 (𝝅) = 𝑎 iff for all 𝑎′ ≠ 𝑎, 𝑎 ≻𝜋𝑖 𝑎
′
. 𝑓 is a dictatorship if it has a dictator.

Theorem 4.11. If𝑚 ≥ 3 and 𝑓 is weakly unanimous and instance-wise monotonic, 𝑓 is a dictatorship.

We prove Theorem 4.11 at the end of this subsection by showing that instance-specific PS-

montonicity implies an increasingly strong series of voting axioms. We build up this system

of axiomatic implications until they meet the preconditions of a known result by Muller and Sat-

terthwaite [1977] implying that 𝑓 is a dictatorship. Below, we step through each of these axiomatic

implications, defining the relevant axioms as we go.
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First, Lemmas 4.13 and 4.15 (proven in Appendix B.4 and Appendix B.5) show that for all weakly

unanimous 𝑓 , instance-wise PS-monotonicity implies monotonicity (Definition 4.12), the standard

voting axiom, and swap invariance (Definition 4.14), which we newly define.

Definition 4.12 (monotonic). A voting rule rule 𝑓 is monotonic iff, for every profile 𝝅 such that

𝑓 (𝝅) = 𝑎, and for every 𝑖 ∈ [𝑛], if 𝝅 ′
is identical to 𝝅 except that in ranking 𝜋 ′

𝑖 , 𝑎 is promoted

(with one adjacent swap) compared in 𝜋𝑖 , then 𝑓 (𝝅 ′) = 𝑎.

Lemma 4.13. If 𝑓 is weakly unanimous and instance-wise PS-monotonic, then it is monotonic.

Definition 4.14 (swap invariant). A voting rule 𝑓 satisfies swap invariance iff, for every profile 𝝅
such that 𝑓 (𝝅) = 𝑎, every 𝑖 ∈ [𝑛], and every pair of alternatives 𝑏, 𝑐 ∈ [𝑚] where 𝑏, 𝑐 ≠ 𝑎, if 𝝅 ′

is

identical to 𝝅 except 𝑏 and 𝑐 are adjacently swapped in 𝜋 ′
𝑖 , then 𝑓 (𝝅 ′) = 𝑎.

Lemma 4.15. If 𝑓 weakly unanimous and monotonic, then if 𝑓 is instance-wise PS-monotonic, it

must also be swap-invariant.

Next, Lemma 4.17 (proven in Appendix B.6) shows that together, monotonicity and swap invariance

imply a stronger notion of monotonicity known as Maskin monotonicity (Definition 4.16).

Definition 4.16 (Maskin-monotonic). A voting rule 𝑓 is Maskin-monotonic iff, for every preference

profile 𝝅 such that 𝑓 (𝝅) = 𝑎, if 𝝅 ′
is another profile such that 𝑎 ≻𝜋 ′

𝑖
𝑏 whenever 𝑎 ≻𝜋𝑖 𝑏 for every

voter 𝑖 and every alternative 𝑏, then 𝑓 (𝝅 ′) = 𝑎.

Lemma 4.17. If 𝑓 is monotonic and swap-invariant, then it is Maskin-monotonic.

Finally, we apply Theorem 4.18, a known result by Muller and Satterthwaite, which shows that any

voting rules that is weakly unanimous and Maskin-monotonic must also be a dictatorship.

Theorem 4.18 ([Muller and Satterthwaite, 1977]). When 𝑚 ≥ 3, if 𝑓 is weakly unanimous and

Maskin-monotonic, it is also dictatorial.

We prove Theorem 4.11 by applying these lemmas in sequence.

Proof of Theorem 4.11.

𝑓 is weakly unanimous and instance-wise PS-monotonic =⇒ 𝑓 is monotonic (Lemma 4.13)

𝑓 is weakly unanimous, monotonic, and instance-wise PS-monotonic

=⇒ 𝑓 is swap-invariant (Lemma 4.15)

𝑓 is monotonic and swap-invariant =⇒ 𝑓 is Maskin-monotonic (Lemma 4.17)

𝑓 is weakly unanimous and instance-wise PS-monotonic

=⇒ 𝑓 is weakly unanimous and Maskin-monotonic

=⇒ 𝑓 is a dictatorship. (Theorem 4.18) □

5 ROBUSTNESS OF DISTORTION BOUNDS
So far, we have considered the distortion of voting rules under two ideal conditions, which we will

now relax: (a) 𝛾𝑚𝑖𝑛 , the minimum public spirit level, is bounded away from zero, and (b) voters act

according to precise and internally-consistent values of the model inputs 𝑢𝑖 (𝑎), 𝛾𝑖 , and sw(𝑎,𝑈 ).
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We will show that the distortion is asymptotically maintained— and degrades smoothly by constant

factors— as we relax these conditions (up to an extent, for (a)).

When proving robustness to violation of (a), we essentially work within our model; to study

deviations from (b), we meaningfully generalize our model to encompass a variety of errors. Our

arguments for both types of robustness follow the same structure, paralleling the main upper bound

results from Sections 3.1 and 3.2 in the robust setting. In particular, for both (a) and (b), we first

prove a “robust” version of Lemma 3.1, and then deduce corresponding “robust” distortion upper

bounds via the same arguments used to deduce our original upper bounds from Lemma 3.1.

5.1 Robustness to a Non-Public-Spirited Contingent
Here, we show that our upper bounds from Section 3 continue to hold up to constants as long as

the number of non-public-spirited voters 𝑖 , i.e. with 𝛾𝑖 = 0, is not too large. We begin by proving a

“robust” version of Lemma 3.1, with respect to this form of robustness:

Lemma 5.1. Let𝑈 be any utility matrix, and let 𝜸 be such that 𝛾𝑚𝑖𝑛 > 0. Then, for any 𝑐 < 1, any

alternatives 𝑏, 𝑎 with sw(𝑎,𝑈 ) > 0 and any 𝜸̃ which arises from setting the public spirit of at most

any 𝑐 · |{𝑎 ≻𝜋𝑖 𝑏}| voters in 𝜸 to zero, it holds that

sw(𝑏,𝑈 )
sw(𝑎,𝑈 ) ≤ 1 − 𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛

· 𝑛

|{𝑖 : 𝑎 ≻𝜋𝑖 𝑏}|(1 − 𝑐) + 1.

Proof. Let us denote the set of voters who both have at least 𝛾𝑚𝑖𝑛 public spirit and rank 𝑎 ahead

of 𝑏 by 𝑁̃𝑎≻𝑏 := |{𝑖 : 𝑎 ≻𝜋𝑖 𝑏 and 𝛾𝑖 ≥ 𝛾𝑚𝑖𝑛}|. Then, we can follow the same arguments as in the

proof of Lemma 3.1 with 𝑁̃𝑎≻𝑏 in place of 𝑁𝑎≻𝑏 to obtain the inequality

|𝑁̃𝑎≻𝑏 |
𝑛

sw(𝑎,𝑈 ) + 1 − 𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛

sw(𝑎,𝑈 ) ≥ |𝑁̃𝑎≻𝑏 |
𝑛

sw(𝑏,𝑈 ).

Dividing both sides by sw(𝑎,𝑈 ) · |𝑁̃𝑎≻𝑏 |/𝑛 yields

sw(𝑏,𝑈 )
sw(𝑎,𝑈 ) ≤ 1 − 𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛

𝑛

|𝑁̃𝑎≻𝑏 |
+ 1.

By assumption, |𝑁̃𝑎≻𝑏 | ≥ (1 − 𝑐) |{𝑖 : 𝑎 ≻𝜋𝑖 𝑏}|, and the claim follows. □

Then, since 𝜅𝑓 lower bounds the fraction of agents who must rank ahead the winner (which we

think of as 𝑎 in the lemma above) ahead of the maximum welfare alternative (which we think of as

𝑏), Lemma 5.1 immediately implies the following corollary, as Lemma 3.1 implied Corollary 3.4.

Corollary 5.2. Let 𝑓 be any voting rule, and let 𝜸 with 𝛾𝑚𝑖𝑛 > 0. Then, for any 𝑐 < 1 and any 𝜸̃
created by setting the public spirit of at most 𝑐𝜅𝑓 · 𝑛 many voters in 𝜸 to zero,

dist(𝑓 , 𝜸̃ ) ≤ 1 − 𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛 (1 − 𝑐)𝜅𝑓
+ 1.

Similarly, for Uncovered Set Rules, Lemma 5.1 implies the following corollary (analogously to

Lemma 3.1 implying Theorem 3.3).

Corollary 5.3. Let 𝑓 be an uncovered set rule, and let 𝜸 with 𝛾𝑚𝑖𝑛 > 0. Then, for any 𝑐 < 1/2 and

for any 𝜸̃ created by setting the public spirit of a 𝑐-fraction of voters in 𝜸 to zero,

dist(𝑓 , 𝜸̃ ) ≤
(

1 − 𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛 (1/2 − 𝑐) + 1

)
2

.
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5.2 Robustness to inaccurate or internally-inconsistent voter behavior
Our model assumes that voters know (or can come to know) their own utilities and the respective

welfares of all alternatives, to which they then uniformly apply some level of public spirit. However,

voters almost certainly do not maintain precise internal values of 𝛾𝑖 and 𝑢𝑖 (𝑎), sw(𝑎,𝑈 ) for all 𝑎,
and then vote by tabulating their PS-values. In fact, it is dubious whether a voter, if asked, could

even assign useful numeric values to these quantities. As a result, the best we can probably hope

for in practice is that voters have some internal sense of these quantities, which may be subject to

errors, biases, and internal inconsistencies.

This motivates our extension of our upper bounds to the case where voters may deviate from our

model with respect to any input to Equation (1). First, we allow voters to misestimate their utilities,

and likewise the social welfares, by some bounded multiplicative error. Since we can always rescale

utilities by a multiplicative factor without changing the voting outcome or the distortion, we can

without loss of generality only consider the case where voters overestimate these quantities. Second,

voters may apply different levels of public spirit to different alternatives. These are not “errors”,

per se, because voters’ levels of public spirit do not factor into the utilitiarian social welfare (our

benchmark) and thus do not necessarily have a ground-truth value. These deviations can rather be

interpreted as internal inconsistencies— or even natural behaviors—where voters are partial to

the nature of certain alternatives’ social benefit over that of others.

To formalize these errors, we assume voter 𝑖 applies multiplicative errors 𝛿𝑖 (𝑎) ≥ 1 to their

utility for 𝑎 and 𝜂𝑖 (𝑎) ≥ 1 to the social welfare of 𝑎. We define 𝛿∗ = max𝑖∈[𝑛],𝑎∈[𝑚] 𝛿𝑖 (𝑎) and
𝜂∗ = max𝑖∈[𝑛],𝑎∈[𝑚] 𝜂𝑖 (𝑎) as the maximum such errors across all voters and alternatives, and we let

𝜹 ∈ [1, 𝛿∗]𝑛×𝑚, 𝜼 ∈ [1, 𝜂∗]𝑛×𝑚 be thematrices of these errors across voters and alternatives.We also

assume 𝑖 applies public spirit level 𝛾𝑖 (𝑎) to each alternative 𝑎, and we let the PS-matrix Γ ∈ [0, 1]𝑛×𝑚
be the matrix of these 𝛾 over all voters and alternatives. We now let 𝛾𝑚𝑖𝑛 = min𝑖∈[𝑛],𝑎∈[𝑚] 𝛾𝑖 (𝑎) be
the minimum level of public spirit in Γ.

Incorporating these deviations, voter 𝑖’s effective PS-value is then

𝑣𝑖 (𝑎, Γ,𝑈 , 𝜹,𝜼) := (1 − 𝛾𝑖 (𝑎)) · 𝛿𝑖 (𝑎)𝑢𝑖 (𝑎) + 𝛾𝑖 (𝑎) · 𝜂𝑖 (𝑎)sw(𝑎,𝑈 )/𝑛.
Correspondingly, we let 𝑉̃ (Γ,𝑈 , 𝜹,𝜼) be the matrix of all voters’ effective PS-values. Finally, we

define distortion under such errors, bounded above by 𝛿∗, 𝜂∗ respectively, as

dist𝛿
∗,𝜂∗ (𝑓 , Γ) := sup

𝑈 ∈R𝑛×𝑚≥0
, 𝜹 ∈[1,𝛿∗ ]𝑛×𝑚, 𝜼∈[1,𝜂∗ ]𝑛×𝑚

sup

𝝅 ∈Π
𝑉̃ (Γ,𝑈 ,𝜹,𝜼)

sw(𝑎∗,𝑈 )
sw(𝑓 (𝝅),𝑈 )

A priori, it seems that the distortion of a voting rule might not be at all robust to such errors,

because even a minimal deviation could cause a pivotal switch in two alternatives, changing the

winner and causing a jump in distortion. Surprisingly, however, we find that we can give distortion

upper bounds on any voting rule that increase smoothly in 𝛿∗ and incur merely an additive term

of 𝜂∗/𝛾𝑚𝑖𝑛 . At a high level, this holds because Lemma 3.1 must still upper-bound the ratio of the

estimated social welfares of the winner and 𝑎∗, which in turn bounds the ratio of the true welfares,

given that the estimates are not too far off. We formalize this intuition below in a generalized

“robust” version of Lemma 3.1 that incorporates these errors.

Lemma 5.4. Fix utility matrix𝑈 , 𝛿∗, 𝜂∗, errors 𝜹 ∈ [1, 𝛿∗]𝑛×𝑚 and 𝜼 ∈ [1, 𝜂∗]𝑛×𝑚 , and a PS-matrix Γ
with 𝛾𝑚𝑖𝑛 > 0. Then, for any alternatives 𝑎, 𝑏 with sw(𝑎,𝑈 ) > 0 and any 𝝅 ∈ Π𝑉̃ (Γ,𝑈 ,𝜹,𝜼) ,

sw(𝑏,𝑈 )
sw(𝑎,𝑈 ) ≤ 𝛿∗ · (1 − 𝛾𝑚𝑖𝑛)

𝛾𝑚𝑖𝑛

· 𝑛

|{𝑖 : 𝑎 ≻𝜋𝑖 𝑏}|
+ 𝜂∗

𝛾𝑚𝑖𝑛
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Proof. We take the same approach as in the proof of Lemma 3.1, this time accounting for all

deviations. For any voter 𝑖 ranking 𝑎 ≻ 𝑏, and thus having 𝑣𝑖 (𝑎, Γ,𝑈 , 𝜹,𝜼) ≥ 𝑣𝑖 (𝑏, Γ,𝑈 , 𝜹,𝜼),

(1 − 𝛾𝑖 (𝑎)) · 𝛿∗𝑢𝑖 (𝑎) + 𝛾𝑖 (𝑎)
𝜂∗sw(𝑎,𝑈 )

𝑛
≥ (1 − 𝛾𝑖 (𝑎)) · 𝛿𝑖 (𝑎)𝑢𝑖 (𝑎) + 𝛾𝑖 (𝑎) · 𝜂𝑖 (𝑎)

sw(𝑎,𝑈 )
𝑛

≥ (1 − 𝛾𝑖 (𝑏)) · 𝛿𝑖 (𝑏)𝑢𝑖 (𝑏) + 𝛾𝑖 (𝑏) · 𝜂𝑖 (𝑏)
sw(𝑏,𝑈 )

𝑛

≥ 𝛾𝑖 (𝑏)
sw(𝑏,𝑈 )

𝑛
.

Then, following through the same rearrangements as in the proof Lemma 3.1 and summing over

𝑁𝑎≻𝑏 (shorthand for {𝑖 : 𝑎 ≻𝜋𝑖 𝑏}), we conclude the proof:

𝜂∗ · sw(𝑎,𝑈 ) |𝑁𝑎≻𝑏 |
𝑛

𝛾𝑖 (𝑎)
𝛾𝑖 (𝑏)

+ 𝛿∗ · 1 − 𝛾𝑖 (𝑎)
𝛾𝑖 (𝑏)

sw(𝑎,𝑈 ) ≥ |𝑁𝑎≻𝑏 |
𝑛

sw(𝑏,𝑈 )

=⇒ sw(𝑏,𝑈 )
sw(𝑎,𝑈 ) ≤ 𝛿∗ · 1 − 𝛾𝑖 (𝑎)

𝛾𝑖 (𝑏)
𝑛

|𝑁𝑎≻𝑏 |
+ 𝜂∗ · 𝛾𝑖 (𝑎)

𝛾𝑖 (𝑏)
≤ 𝛿∗ (1 − 𝛾𝑚𝑖𝑛)

𝛾𝑚𝑖𝑛

𝑛

|𝑁𝑎≻𝑏 |
+ 𝜂∗

𝛾𝑚𝑖𝑛

. □

Now, we conclude the robust versions of our original distortion upper bounds. Lemma 5.4 implies

Corollary 5.5 just as Lemma 3.1 implied Corollary 3.4. Similarly, Lemma 5.4 implies Corollary 5.6

just as Lemma 3.1 implied Theorem 3.3.

Corollary 5.5. For all voting rules 𝑓 , all 𝛿∗, 𝜂∗ ≥ 1 and PS-matrices Γ ∈ [0, 1]𝑛×𝑚 with 𝛾𝑚𝑖𝑛 > 0,

dist𝛿
∗,𝜂∗ (𝑓 , Γ) ≤ 𝛿∗ (1 − 𝛾𝑚𝑖𝑛)

𝛾𝑚𝑖𝑛 𝜅𝑓
+ 𝜂∗

𝛾𝑚𝑖𝑛

.

Corollary 5.6. For all uncovered set rules 𝑓 , all 𝛿∗, 𝜂∗ ≥ 1 and PS-matrices Γ ∈ [0, 1]𝑛×𝑚 with

𝛾𝑚𝑖𝑛 > 0,

dist𝛿
∗,𝜂∗ (𝑓 , Γ) ≤

(
2𝛿∗ (1 − 𝛾𝑚𝑖𝑛)

𝛾𝑚𝑖𝑛

+ 𝜂∗

𝛾𝑚𝑖𝑛

)
2

.

A remark about tightness. Most of the upper bounds derived from Lemma 3.1 were tight for

constant PS-vectors 𝜸 = 𝛾1 (Section 3.3). Thus, one may wonder whether the upper bounds in

this subsection are likewise tight for constant PS-matrices. This question merits formal theoretical

treatment, because one must construct a separate lower bound for each voting rule, as in Section 3.3.

However it does seem that tightness should hold via the following simple construction: let 𝑎′ be
the election winner. Then, construct a profile in which, for all voters 𝑖 , 𝛿𝑖 (𝑎′) = 𝛿∗ and 𝜂𝑖 (𝑎′) = 𝜂∗

and 𝛿𝑖 (𝑎) = 𝜂𝑖 (𝑎) = 1 for all other 𝑎 ≠ 𝑎′. Intuitively, this construction allows 𝑎′ to win the election

with the smallest true utility possible, and should yield lower bounds corresponding to those in

Section 3.3 as follows: if a lower bound on the standard model is, for some functions ℎ,𝑔, of the

form ℎ(𝑔(𝑚) · (1 − 𝛾)/𝛾 + 1), then it should be ℎ(𝑔(𝑚) · 𝛿∗ (1 − 𝛾)/𝛾 + 𝜂∗) in the generalized model.

6 DISCUSSION
A key contribution of our work is to establish cultivating voters’ public spirit as a new approach to

increasing the welfare of democratic decision-making— an approach which can be operational-

ized via publicly-palatable interventions like deliberation. In the introduction, we discussed why

increasing the welfare of voting outcomes is a pressing goal; however, regardless of how pressing

one believes this goal to be, our results suggest that in many senses, interventions that promote

public spirited voting can only help.
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Of course, these results arise from a theoretical model, so their practical implications depend on

how our model may capture— or fail to capture— reality. On this note, our robustness results in

Section 5.2 cover a wide range of plausible behavioral deviations: they allow voters to, e.g., assess

their utilities on different scales, overestimate their own utilities compared to others’, have biases

that cause them to systematically under-weight the interests of certain groups, apply different

levels of public spirit to different alternatives, or even more coarsely, just maintain a ranking over

alternatives rather than any sense of these quantities (this corresponds to arbitrary errors in utilities

and social welfares). Our results in Section 5.1 also allow for participants who exhibit no public

spirit; however, a key issue we sidestep is the case where some participants not only lack public

spirit, but are actually adversarial to the process. We address this in future work below.

6.1 Future work
In addition to the theoretical directions identified below, we remark that our work motivates further

experiments studying how voters’ public spirit changes over the course of deliberation. In turn,

with a more detailed understanding of the structure of voters’ deviations from our model, one can

get more fine-grained robustness bounds than we achieve in Section 5.2.

Strategic voters among public spirited voters. As always, in our setting there is the potential

for manipulation—perhaps more so here because some voters are prioritizing the collective rather

than acting in rational self-interest. The possibility of some voters being strategic opens several

questions, such as: ‘Does public spirit among most voters make the voting process more or less

robust to a few manipulators?’ and ’Given that the presence of strategic voters might pose a risk to

others, how might voters who would otherwise intend to be public-spirited respond?’

Sufficient conditions for (approximate) instance-wise monotonicity. While in many re-

spects, our results suggest that increased public spirit is beneficial, Theorem 4.11 shows an extremely

fundamental impossibility: that in general, public spirit may not help on an instance-by-instance

basis. This begs the question: can we establish sufficient conditions on instances— ideally which

are roughly detectable in practice— under which we can be certain that increasing the public spirit

will improve outcomes? Moreover, even if we cannot hope for exact monotonicity, can we show

approximate notions, e.g., in which the social welfare increases up to bounded fluctuations?

Extensions to other notions of social welfare. In this paper, we assume that public-spirited

voters determine how positively an alternative impacts society according to its utilitarian social

welfare. However, voters might just as easily take an egalitarian perspective, thus quantifying an

alternative’s social welfare by how it affects the person it benefits the least. Even further, there is

no guarantee that public spirited voters apply the same priorities when assessing the social welfare.

These points open questions such as, if voters are public-spirited but quantify the social good via

different objectives, does public spirit still increase the welfare of the outcome?

Other collective decision mechanisms. Our results identify public-spirited voting behavior

within democratic contexts as a powerful, practically-motivated beyond-worst-case assumption.

We have demonstrated this specifically for deterministic voting mechanisms where voters express

preferences as complete rankings. However, there are many other well-studied collective decision

mechanisms— e.g., randomized voting rules, approval voting, multi-winner elections, liquid democ-

racy, participatory budgeting— that could potentially benefit from public spirit, too. To initiate the

study of public spirit in other mechanisms, we remark that all the aforementioned mechanisms can

be analyzed in the same utilitarian social welfare framework: one needs only to specify a model of

how voters translate their underlying utilities into ballot responses— analogous to our Equations (1)

and (2) — that allows voters to weigh their own interests against the common good.
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A SUPPLEMENTAL MATERIALS FROM SECTION 3
By convention, throughout the appendices 𝑎′ denotes the winner of the election, i.e. 𝑎′ = 𝑓 (𝝅),
and 𝑎∗ denotes the highest-welfare alternative.

A.1 Explanation of instance diagrams
In this section of the appendix, we will present the utility matrices of counterexample instances

(usually for proving lower bounds) via diagrams. Below, we show the anatomy of such a diagram:

a′￼

Aa′￼

A 1
x
0

Utilities
…m − 11

Δf

1 − Δf

(A)

(B)

a*
a*

2
≻ ≻
≻ ≻

m

+ϵ

−ϵ

1/2
1/2
0

3 . . . m21

1
y
x

0

w
Utilities

(A)

(B)

(C)

4
a* a′￼ A Ã≻ ≻ ≻

≻ ≻ ≻
≻ ≻ ≻

a′￼

a′￼ a*

Ã

Ã

A a*

A+2ϵ

−ϵ

−ϵ

a* a′￼ A Ã

C/ m

m1
x

y
1
0

Utilities

(A)

(B)

t + 1

a*a′￼ A1≻

≻ ≻ ≻1 − C/ m

≻

……

a* a′￼A2 A3

a′￼

a′￼

A 1
x
0

Utilities
…m − 11

1/m
1 − 1/m

(A)

(B)

m

≻
≻A

t

1

x
1
0

Utilities

(A) a′￼ ≻1

…

a*

m

Fraction of voters in each 
group (must add to 1)

Group labels Ranking positions

Numeric utilities 
associated with 
colored bars

2

A ≻

m − 1

Proposed ranking implied 
by the utilities

+ϵ

−ϵ

Voters. Most diagrams will have multiple rows, but this one has just a single row, reflecting the fact

that this utility matrix has only one group of voters, labeled as group (A) on the left. All members of

a given group have the same utilities for all alternatives, and thus the same ranking over alternatives.

On the left of the box is the number 1, indicating that all voters (a 1-fraction) belong to group (A).

Alternatives. The alternatives are listed in the white region of the box. In this instance, there are

𝑚 alternatives: 𝑎′, 𝑎∗, and all alternatives in 𝐴, which represents a bloc of alternatives that are

interchangeable in the instance, i.e., treated identically by all voters.

Utilities. We encode voters’ utilities for alternatives with colored bars corresponding to the alterna-

tive below them, where darker colors correspond to higher utilities. The utility value associated

with each color is on the right hand side of the diagram in the key labeled ‘Utilities’. Sometimes,

this key will contain variables like 𝑥 , which we will set carefully in the proof, as they are functions

of 𝛾 . For example, in the diagram above, every voter in group (A) has utility 1 for alternative 𝑎′, 𝑥
for all 𝑎 ∈ 𝐴, and 0 for 𝑎∗. In these examples, we will occasionally set utilities to be larger than 1 to

make the math clearer because the scaling is more convenient.

Rankings. Finally, these diagrams encode the rankings that we propose are implied by the utilities.

These rankings are denoted by the list of alternatives in the box, separated by ≻ symbols to denote

that they are ordered. For instance, the ranking proposed in the above instance is 𝑎′ ≻ 𝐴 ≻ 𝑎∗, i.e.,
all voters in group (A) rank 𝑎′ first, 𝑎∗ is last, and all other alternatives in between. Of course, the

fact that these rankings are realized by the given utilities requires proving, which we will do when

we prove our lower bounds. The ranking positions are given above the box.

Regarding the rankings of alternatives in blocs like 𝐴, we will make various assumptions about

how the alternatives within 𝐴 are ranked, via arbitrarily small perturbations of the utilities of those

alternatives.
7

7
We will usually assume that the alternatives in 𝐴 are cycled symmetrically across voters’ rankings (using arbitrarily small

epsilons to tie-break), but sometimes we will instead assume that these alternatives are always ranked consistently. Either

way, we can do this tie-breaking without affecting the distortion.
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A.2 Proof of Proposition 3.5

Proposition 3.5. 𝜅Plurality = 1/𝑚, so for all 𝜸 with 𝛾𝑚𝑖𝑛 > 0, dist(Plurality,𝜸 ) ≤ 𝑚
1−𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛
+ 1.

Proof. In light of Corollary 3.4, proving the claim amounts to proving 𝜅Plurality (𝑚) ≥ 1/𝑚. Let

𝑓 = Plurality. For the sake of contradiction, suppose there exists a profile 𝝅 and an alternative 𝑎

such that |{𝑖 |𝑓 (𝝅) ≻𝜋𝑖 𝑎}|/𝑛 < 1/𝑚. For shorthand, let 𝑎′ = 𝑓 (𝝅). Then, 𝑎′ must be ranked first by

less than a 1/𝑚 fraction of the voters in 𝝅 , meaning 𝑎′ receives strictly less than 𝑛/𝑚 points. There

are 𝑛 total points awarded across alternatives, so by averaging, there must be an alternative 𝑎 ≠ 𝑎′

that receives strictly more than 1/𝑚 points, implying that 𝑓 (𝝅) ≠ 𝑎′, a contradiction. □

A.3 Proof of Proposition 3.6

Proposition 3.6. 𝜅Borda = 1/𝑚, so for all 𝜸 with 𝛾𝑚𝑖𝑛 > 0, dist(Borda,𝜸 ) ≤ 𝑚
1−𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛
+ 1.

Proof. Proving this claim amounts to proving that 𝜅Borda (𝑚) ≥ 1/𝑚. Let 𝑓 = Borda. For the sake

of contradiction, suppose there exists a profile 𝝅 and an alternative 𝑎 such that |{𝑖 : 𝑓 (𝝅) ≻𝜋𝑖

𝑎}|/𝑛 < 1/𝑚. For shorthand, let 𝑎′ = 𝑓 (𝝅).

Now, divide voters into two groups: those who rank 𝑎′ ≻ 𝑎 (an 𝑥 < 1/𝑚 fraction of the voters),

and those who rank 𝑎 ≻ 𝑎′ (the remaining 1 − 𝑥 fraction of voters). Among all voters in the first

group, the point gap between 𝑎′ and 𝑎 is at most 1, corresponding to 𝑎′ ranked first and 𝑎 last. For

all voters in the second group, the point gap between 𝑎′ and 𝑎 is at most −1/(𝑚 − 1), i.e., 𝑎 receives

at least 1/(𝑚 − 1) more points than 𝑎′ from each of these voters’ rankings. Then, denoting the

respective point totals by 𝑃 (𝑎′) and 𝑃 (𝑎),

𝑃 (𝑎′) − 𝑃 (𝑎) ≤ 𝑥 · 1 + (1 − 𝑥) · −1

𝑚 − 1

<
1

𝑚
+
(
1 − 1

𝑚

)
· −1

𝑚 − 1

= 0.

Therefore, 𝑎′ must receive less points than 𝑎 and cannot be the Borda winner, a contradiction. □

A.4 Proof of Proposition 3.7
Proposition 3.7. For all 𝜸 with (fixed) 𝛾𝑚𝑖𝑛 > 0, dist(Piecewise,𝜸 ) ∈ 𝑂 (𝑚2/3).

Proof. Let 𝑈 ∈ R𝑛×𝑚≥0
, fix arbitrary 𝜸 with 𝛾𝑚𝑖𝑛 > 0 (as in the hypothesis), and let 𝝅 ∈ Π𝑉 (𝜸 ,𝑈 ) .

Let 𝑎′ = Piecewise(𝝅) and 𝑎∗ denote the winner and the highest-welfare alternative, respectively.

Without loss of generality, let us assume that the average utility of 𝑎∗ is sw(𝑎∗)/𝑛 = 1. We treat

separately the scenarios where the lower bound on the social welfare of 𝑎′ comes from 𝑎′ having to
beat 𝑎∗ (Case 1), and when it comes from having to beat some other alternative (Case 2).

Case 1: Suppose at least half of voters rank 𝑎∗ in the first𝑚2/3
positions. Let us call this subset of

voters

𝑁 ∗ = {𝑖 : (𝜋𝑖 )−1 (𝑎∗) ≤ 𝑚2/3},
satisfying |𝑁 ∗ | ≥ 𝑛/2. If 𝑎′ ranks ahead of 𝑎∗ in more than half of 𝑁 ∗

, then Lemma 3.1 immediately

gives a constant distortion bound. If on the other hand 𝑎′ ranks behind 𝑎∗ in more than half of 𝑁 ∗
,

and since 𝑎∗ is located in the first𝑚2/3
positions where the spacing between consecutive positions

is 𝑠𝑡 − 𝑠𝑡−1 =𝑚−2/3
, 𝑎′ amasses a point deficit of at least

𝑚−2/3 · |𝑁
∗ |

2

≥ 𝑚−2/3 · 𝑛
4

,
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relative to 𝑎∗. Thus, in order to beat 𝑎∗ overall, 𝑎′ must rank ahead of 𝑎∗ at least𝑚−2/3 · 𝑛/4 times.

Therefore, using Lemma 3.1, we obtain a distortion bound of the order 𝑂 (𝑚2/3):
sw(𝑎∗,𝑈 )
sw(𝑎′,𝑈 ) ≤ 1 − 𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛

· 4𝑚2/3 + 1.

Case 2: Now suppose 𝑎∗ is ranked in the first𝑚2/3
positions by less than 1/2 of the voters. Again

let 𝑁 ∗
be again the voters where 𝑎∗ ranks in the first𝑚2/3

positions; we have that | (𝑁 ∗)𝑐 | ≥ 𝑛/2

(using (·)𝑐 to denote the complement). Now, for each alternative 𝑎, define the frequency with which

𝑎 occurs in the first𝑚2/3
positions amongst (𝑁 ∗)𝑐 by

𝐹𝑎 =
|{𝑖 ∈ (𝑁 𝑐 )∗ : (𝜋𝑖 )−1 (𝑎) ≤ 𝑚2/3}|

𝑛
.

Since | (𝑁 ∗)𝑐 | ≥ 𝑛/2, the average frequency of occurrence in the first𝑚2/3
positions must satisfy

1

𝑚

∑
𝑎∈[𝑚]

𝐹𝑎 ≥ 𝑛𝑚2/3

2𝑚𝑛
=
𝑚−1/3

2

. (5)

Now, we need a further case distinction, based on how many alternatives have, roughly speaking,

above-average frequency of occurrence in the first𝑚2/3
positions. To this end, let 𝐴 be the set of

alternatives that have 𝐹𝑎 ≥ 𝑚−1/3/4:

𝐴 := {𝑎 ∈ 𝐴 : 𝐹𝑎 ≥ 𝑚−1/3/4}.

Case 2a: Suppose |𝐴| > 𝑚2/3
. Let us now lower bound the average utility of alternatives 𝑎 ∈ 𝐴.

First, since agents 𝑖 ∈ (𝑁 ∗)𝑐 rank 𝑎∗ in a lower position than𝑚2/3
, the set featuring in the definition

of 𝐹𝑎 is contained as follows

{𝑖 : (𝑁 𝑐 )∗ : (𝜋𝑖 )−1 (𝑎) ≤ 𝑚2/3} ⊆ {𝑖 : 𝑎 ≻𝝅𝑖
𝑎∗}.

Therefore, we may use Lemma 3.1 to estimate

𝑛

sw(𝑎,𝑈 ) ≤ 1 − 𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛

𝑛

{𝑖 : 𝑎 ≻𝝅𝑖
𝑎∗} + 1 ≤ 1 − 𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛

1

𝐹𝑎
+ 1 ≤ 1 − 𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛

4𝑚1/3 + 1, (6)

which leads to the lower bound

sw(𝑎,𝑈 )
𝑛

≥
(
1 − 𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛

4𝑚1/3 + 1

)−1

=: 𝑤̄, satisfying 𝑤̄ = Ω(𝑚−1/3).

Next, we deduce from this a lower bound on the social welfare of 𝑎′. Since there are in total 𝑛𝑚2/3/2

points awarded in the election, 𝑎′ has to score at least𝑚−1/3/2 points per voter (on average) to win.

Thus, 𝑎′ has to rank in the first𝑚2/3
positions at least 𝑛/(2𝑚1/3) many times – denote this set of

voters by

𝑁 ′
:= {𝑖 : (𝜋𝑖 )−1 (𝑎′) ≤ 𝑚2/3}, satisfying |𝑁 ′ |/𝑛 ≥ 𝑚−1/3/2.

Since |𝐴| > 𝑚2/3
, every time that 𝑎′ ranks in the first𝑚2/3

positions, it has to rank ahead of an

alternative 𝑎 ∈ 𝐴, whose average utility is lower bounded by 𝑤̄ . Therefore, arguing as in Lemma

3.1, we obtain that

𝑤̄

sw(𝑎′,𝑈 )/𝑛 ≤ 1 − 𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛

𝑛

|𝑁 ′ | + 1,

which implies

sw(𝑎′,𝑈 )
𝑛

≥ 𝑤̄

(
1 − 𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛

𝑛

|𝑁 ′ | + 1

)−1

≥ 𝑤̄

(
1 − 𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛

2𝑚1/3 + 1

)−1

= Ω(𝑚−2/3).
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Case 2b: Now suppose |𝐴| ≤ 𝑚2/3
. Using (5), we then obtain that

𝑚−1/3

2

≤ 1

𝑚

(∑
𝑎∈𝐴

𝐹𝑎 +
∑
𝑎∉𝐴

𝐹𝑎

)
=

|𝐴|
𝑚

· 1

|𝐴|

∑
𝑎∈𝐴

𝐹𝑎 +
|𝐴𝑐 |
𝑚

· 1

|𝐴𝑐 |

∑
𝑎∉𝐴

𝑚−1/3

4

≤ |𝐴|
𝑚

· 1

|𝐴|

∑
𝑎∈𝐴

𝐹𝑎 +
𝑚−1/3

4

.

Rearranging and using that |𝐴| ≤ 𝑚2/3
, we obtain that

𝑚−1/3

4

≤ |𝐴|
𝑚

· 1

|𝐴|

∑
𝑎∈𝐴

𝐹𝑎 ≤ 𝑚2/3

𝑚
· 1

|𝐴|

∑
𝑎∈𝐴

𝐹𝑎 =𝑚−1/3
1

|𝐴|

∑
𝑎∈𝐴

𝐹𝑎

=⇒ 1

|𝐴|

∑
𝑎∈𝐴

𝐹𝑎 ≥ 1

4

.

It follows that there must exist at least one alternative 𝑎 ∈ 𝐴 such that 𝐹𝑎 ≥ 1/4. Since at least 𝑛/4

voters rank 𝑎 ahead of 𝑎∗, Lemma 3.1 implies that

𝑛

sw(𝑎,𝑈 ) ≤ 4

1 − 𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛

+ 1,

and thus the average utility of 𝑎 is lower bounded by a constant, sw(𝑎,𝑈 )/𝑛 = Ω(1). We may now

complete the proof by arguing as in Case 1: Indeed, each time 𝑎′ ranks behind 𝑎, it incurs a scoring
deficit of𝑚−2/3

. It thus must rank ahead of 𝑎 at least Ω(𝑛𝑚−2/3) times, which, via Lemma 3.1, gives

the desired lower bound sw(𝑎′,𝑈 )/𝑛 = Ω(𝑚−2/3). □

A.5 Proof of Proposition 3.8
The goal of this section is to show the following upper bound for the distortion of Maximin.

Proposition 3.8. 𝜅Maximin = 1/𝑚, so for all 𝜸 with 𝛾𝑚𝑖𝑛 > 0, dist(Maximin,𝜸 ) ≤ 𝑚
1−𝛾𝑚𝑖𝑛

𝛾𝑚𝑖𝑛
+ 1.

Our high-level proof strategy is to show that 𝜅Maximin = 1/𝑚. Then, the proposition follows

immediately from an application of Corollary 3.4. Since every voting rule satisfies 𝜅𝑓 ≤ 1/𝑚, we

only have to show that 𝜅Maximin ≥ 1/𝑚, which is directly implied by the following lemma.

Lemma A.1. For every 𝝅 preference profile, there exists some alternative 𝑎 ∈ [𝑚] such that

min

𝑎≠𝑎
{𝑖 : 𝑎 ≻𝝅𝑖

𝑎} ≥ 𝑛/𝑚.

In particular, the Maximin winner 𝑎′ (which is the alternative with the smallest maximum pairwise

loss) must also satisfy

min

𝑎≠𝑎′
|{𝑖 : 𝑎′ ≻𝜋𝑖 𝑎}| ≥ 𝑛/𝑚.

Consequently, it also holds that 𝜅Maximin ≥ 1/𝑚.

Proof. We define a sequence of alternatives (𝑎 𝑗 : 𝑗 ≥ 1) as follows. Start with an arbitrary

alternative 𝑎1. Given 𝑎 𝑗 , we let 𝑎 𝑗+1 be the alternative which pairwise-dominates 𝑎 𝑗 by the most,

𝑎 𝑗+1 := arg max

𝑎∈[𝑚]\{𝑎 𝑗 }
|{𝑖 : 𝑎 ≻𝜋𝑖 𝑎 𝑗 }|.
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In this process, if we encounter an alternative that has previously been part of the sequence, i.e.

𝑎 𝑗+1 = 𝑎𝑘 for some 𝑘 ≤ 𝑗 , then we exit the recursive procedure, and draw a cycle (𝑎𝑘 , . . . , 𝑎 𝑗+1).
Then, the longest such cycle we can create is of length𝑚+1. Since 𝑎1 was arbitrary, we may without

loss of generality assume that the constructed cycle starts at 𝑘 = 1, and has length 𝐿, i.e. the cycle is

(𝑎1, . . . , 𝑎𝐿) with 𝑎1 = 𝑎𝐿 . Now, let 𝑁 𝑗 ⊆ [𝑛] denote the set of voters who rank 𝑎 𝑗+1 ≻ 𝑎 𝑗 , i.e., who

contribute to 𝑎 𝑗 ’s worst pairwise defeat. We now make the following claim.

Claim: There exists some 𝑗∗ ∈ [𝐿] such that |𝑁 𝑗∗ | ≤ 𝐿−2

𝐿−1
𝑛.

To prove the claim, we first note that there cannot exist any voter 𝑖 such that

𝑎1 ≻𝜋𝑖 ... ≻𝜋𝑖 𝑎𝐿 ≻𝜋𝑖 𝑎1,

since this ranking would be cyclical. It follows that

𝐿−1⋂
𝑗=1

𝑁 𝑗 = ∅.

Now, assume for the sake of contradiction that for all 𝑗 = 1, ..., 𝐿 it holds that |𝑁 𝑗 | > 𝐿−2

𝐿−1
𝑛. Then,

this implies that. �� 𝐽⋂
𝑗=1

𝑁 𝑗

�� > 𝐿 − 1 − 𝐽

𝐿 − 1

𝑛, for all 𝐽 = 1, ..., 𝐿 − 1.

Intuitively, we are saying that if all 𝑁 𝑗 individually comprise nearly the entire set of voters, their

intersection must be somewhat large. Now, looking in particular at the case where 𝐽 = 𝐿 − 1,

the above inequality implies that |⋂𝐿−1

𝑗=1
𝑁 𝑗 | > 0, which contradicts that the intersection of all

𝑁 𝑗 : 𝑗 ∈ [𝐿 − 1] must be empty, as above. We conclude that the claim is true.

Since 𝐿 − 1 ≤ 𝑚, the preceding claim implies that there exists some 𝑎 𝑗∗ whose worst defeat is by

less than
𝐿−1

𝐿
≤ 𝑚−1

𝑚
fraction of voters, i.e.,

max

𝑎≠𝑎 𝑗∗

|{𝑖 : 𝑎 ≻𝜋𝑖 𝑎 𝑗∗ }|
𝑛

≤ 𝑚 − 1

𝑚
.

This proves the first assertion of the proposition, that is, by setting 𝑎 = 𝑎 𝑗∗ , we obtain the desired

alternative for which at least 𝑛/𝑚 voters must rank 𝑎 ≻ 𝑎.

Since 𝑎′ is the Maximin winner, we further obtain that

min

𝑎≠𝑎′
|{𝑖 : 𝑎′ ≻𝜋𝑖 𝑎}| ≥ min

𝑎≠𝑎 𝑗∗
|{𝑖 : 𝑎 ≻𝜋𝑖 𝑎 𝑗∗ }| ≥

𝑛

𝑚
.

□

A.6 Proof of Proposition 3.9

Proposition 3.9. For all uniform 𝜸 = 𝛾1, 𝛾 ∈ [0, 1], dist(Copeland,𝜸 ) ≥
(

2(1−𝛾 )
𝛾

+ 1

)
2

.

Proof. The claim is true when 𝛾 = 1 trivially, so we will consider 𝛾 < 1. Let𝑈 be the utility matrix

described by the diagram (see Appendix A.1 for a primer on reading these diagrams), where 𝜖 > 0

and𝑊 is some sufficiently large value that depends on 𝛾 (but not 𝜖).

𝑤 =𝑊, 𝑥 =
𝛾/2

1 − 𝛾/2

, 𝑦 =

(
𝛾/2

1 − 𝛾/2

)
2

.



Bailey Flanigan, Ariel D. Procaccia, and Sven Wang 25

a′￼

Aa′￼

A 1
x
0

Utilities
…m − 11

Δf

1 − Δf

(A)

(B)

a*
a*

2
≻ ≻
≻ ≻

m

+ϵ

−ϵ

1/2
1/2
0

3 . . . m21

1
y
x

0

w
Utilities

(A)

(B)

(C)

4
a* a′￼ A Ã≻ ≻ ≻

≻ ≻ ≻
≻ ≻ ≻

a′￼

a′￼ a*

Ã

Ã

A a*

A+2ϵ

−ϵ

−ϵ

a* a′￼ A Ã

C/ m

m1
x

y
1
0

Utilities

(A)

(B)

t + 1

a*a′￼ A1≻

≻ ≻ ≻1 − C/ m

≻

……

a* a′￼A2 A3

a′￼

a′￼

A 1
x
0

Utilities
…m − 11

1/m
1 − 1/m

(A)

(B)

m

≻
≻A

t

1

x
1
0

Utilities

(A) a′￼ ≻1

…

a*

m

Fraction of voters in each 
group (must add to 1)

Group labels Ranking positions

Numeric utilities 
associated with 
colored bars

2

A ≻

m − 1

Proposed ranking implied 
by the utilities

+ϵ

−ϵ

Observe that 1 > 𝑥 > 𝑦 > 0, and the average utilities of alternatives are the following, where here

and throughout this analysis, we will gray out 𝜖 terms, as they can be made arbitrarily small.

Now, establishing the average utilities: sw(𝑎∗,𝑈 )/𝑛 = 1/2−𝜖 ; sw(𝑎′,𝑈 )/𝑛 = 𝑦/2+𝜖 (2𝑤 − 𝑦/2); for
all 𝑎 ∈ 𝐴, sw(𝑎,𝑈 )/𝑛 = 𝑥 (1/2 + 𝜖) = 𝑥/2+𝑥𝜖 ; and for all 𝑎 ∈ 𝐴̃, sw(𝑎,𝑈 )/𝑛 = 0.

Claim 1. The utilities imply the claimed rankings. First, observe that by virtue of having zero social

welfare, the alternatives in 𝐴̃ are always ranked last. We will consider only the other relative

rankings throughout this analysis. We confirm each group’s ranking left to right by comparing the

values of 𝑣𝑖 (𝑎,𝜸 ,𝑈 ) (Equation (2)), derived below.

Let 𝑖 ∈ Group (A) and 𝑎 ∈ 𝐴. Then, 𝑎∗ ≻𝜋𝑖 𝑎
′ ≻𝜋𝑖 𝑎:

𝑣𝑖 (𝑎∗,𝜸 ,𝑈 ) = (1 − 𝛾) + 𝛾 (1/2 − 𝜖) = 1 − 𝛾/2−𝛾𝜖
𝑣𝑖 (𝑎′,𝜸 ,𝑈 ) = (1 − 𝛾)𝑦 + 𝛾 (𝑦 (1/2 − 𝜖) + 2𝜖𝑊 ) = 𝑦 (1 − 𝛾/2)+𝜖𝛾 (2𝑊 − 𝑦)

𝑣𝑖 (𝑎,𝜸 ,𝑈 ) = 𝛾𝑥 (1/2 + 𝜖) = 𝛾/2 ·
(

𝛾/2

1 − 𝛾/2

)
+𝜖𝛾𝑥 = 𝑦 (1 − 𝛾/2)+𝜖𝛾𝑥

Let 𝑖 ∈ Group (B) and 𝑎 ∈ 𝐴. Then, 𝑎 ≻𝜋𝑖 𝑎
∗ ≻𝜋𝑖 𝑎

′
:

𝑣𝑖 (𝑎,𝜸 ,𝑈 ) = 𝑥 (1 − 𝛾 + 𝛾 (1/2 + 𝜖)) = 𝑥 (1 − 𝛾/2)+𝛾𝑥𝜖 = 𝛾/2+𝛾𝑥𝜖
𝑣𝑖 (𝑎∗,𝜸 ,𝑈 ) = 𝛾 (1/2 − 𝜖) = 𝛾/2−𝛾𝜖

𝑣𝑖 (𝑎′,𝜸 ,𝑈 ) = 𝛾 (𝑦 (1/2 − 𝜖) + 2𝜖𝑊 ) = 𝛾𝑦/2+𝜖𝛾 (2𝑊 − 𝑦)

Let 𝑖 be in Group (C), and 𝑎 ∈ 𝐴. Then, 𝑎′ ≻𝜋𝑖 𝑎 ≻𝜋𝑖 𝑎
∗
:

𝑣𝑖 (𝑎′,𝜸 ,𝑈 ) = (1 − 𝛾)𝑊 + 𝛾 (𝑦 (1/2 − 𝜖) + 2𝑊𝜖) = (1 − 𝛾)𝑊 + 𝛾𝑦/2+𝜖𝛾 (2𝑊 − 𝑦)

𝑣𝑖 (𝑎,𝜸 ,𝑈 ) = 𝑥 (1 − 𝛾 + 𝛾 (1/2 + 𝜖)) =
(

𝛾/2

1 − 𝛾/2

)
(1 − 𝛾/2)+𝜖𝛾𝑥 = 𝛾/2+𝜖𝛾𝑥

𝑣𝑖 (𝑎∗,𝜸 ,𝑈 ) = 𝛾 (1/2 − 𝜖) = 𝛾/2−𝜖𝛾

Claim 2. 𝑎′ is the Copeland winner. To do this analysis quickly, we draw the pairwise majority

graph for this instance, where an arrow 𝑎 → 𝑎 indicates that 𝑎 pairwise-dominates 𝑎:

c* c′￼ C−1 C2n /2−

n /2−

0+
C+

1 c* c′￼ C2

c′￼

C1c′￼ c* C2

3 . . . m21
1
y
x

0

Utilities

(a)

(b)
(c) -

≻
4

≻ ≻
≻ ≻ ≻

≻ ≻ ≻

n /2−

n /2−

0+

3 . . . m21

1
y
x

0

Utilities(a)

(b)

(c)

4
a* a′￼ A Ã≻ ≻ ≻

≻ ≻ ≻
≻ ≻ ≻

+

a′￼

a′￼ a*
Ã

Ã

A a*
A

a* a′￼ A Ã
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Because we assume that items are symmetrically within 𝐴, and similarly within 𝐴̃, 𝑎′ is the unique
Copeland winner:

8

• 𝑎′ gets𝑚 − 2 points by strictly pairwise defeating 2 items in 𝐴 and𝑚 − 4 items in 𝐴̃.

• 𝑎∗ gets𝑚 − 3 points by strictly pairwise defeating 𝑎′ and𝑚 − 4 items in 𝐴̃.

• all 𝑎 ∈ 𝐴 get𝑚 − 3 points by strictly pairwise defeating 𝑎∗ and𝑚 − 4 items in 𝐴̃.

• all 𝑎 ∈ 𝐴̃ get 0 points.

Distortion. It follows that the distortion in this instance, provided the proposed rankings are realized,

approaches the following quantity as 𝜖 → 0:

sw(𝑎∗,𝑈 )
sw(𝑎′,𝑈 )

𝜖→0−−−→ 1/2

𝑦/2

=

(
1 − 𝛾/2

𝛾/2

)
2

=

(
2 − 𝛾

𝛾

)
2

=

(
2(1 − 𝛾)

𝛾
+ 1

)
2

□

A.7 Proof of Proposition 3.10

Proposition 3.10. For all uniform 𝜸 = 𝛾1, 𝛾 ∈ [0, 1], dist(Slater,𝜸 ) ≥
(

2(1−𝛾 )
𝛾

+ 1

)
2

.

Proof. We can lower-bound Slater’s distortion identically to Copeland’s, as in Proposition 3.9,

via the same instance (with slightly different treatment of the alternatives in 𝐴, 𝐴̃). In particular,

where before we cycled alternatives symmetrically in these set, now assume that items are always

ordered the same way within 𝐴, and similarly within 𝐴̃. In particular, let 𝜋𝐴, 𝜋𝐴̃ be these consistent

sub-rankings. Fix this instance 𝜸 ,𝑈 . Then, 𝑎′ is the unique Slater winner, by the argument below.

Note that this is all we need to prove identical distortion to Proposition 3.9, because we have already

confirmed that the rankings in this instance are realized by the utilities, as well as the distortion

itself, in the proof of Proposition 3.9.

First, we will pare down the possible slater rankings. Observe that because items within 𝐴, 𝐴̃ are

always ranked as 𝜋𝐴, 𝜋𝐴̃ in 𝝅𝜸 ,𝑈
, the slater ranking must also rank them in this order to minimize

pairwise disagreements. Similarly, the slater ranking will always rank everything in 𝐴̃ in the last

𝑚 − 4 slots, as those items are always in those slots in 𝝅𝜸 ,𝑈
.

That leaves us with the possible slater rankings listed below, using 𝜋𝐴, 𝜋𝐴̃ to denote all alternatives

in those sets in their fixed ordering. Note that 𝐴 contains 2 alternatives and 𝐴̃ contains 𝑚 − 4

alternatives. For each ranking, we tally its disagreements with the pairwise majority graph.

• 𝑎′ ≻ 𝜋𝐴 ≻ 𝑎∗ ≻ 𝜋𝐴̃ disagrees with 1

• 𝑎′ ≻ 𝑎∗ ≻ 𝜋𝐴 ≻ 𝜋𝐴̃ disagrees with 3

• 𝑎∗ ≻ 𝑎′ ≻ 𝜋𝐴 ≻ 𝜋𝐴̃ disagrees with 2

• 𝑎∗ ≻ 𝜋𝐴 ≻ 𝑎′ ≻ 𝜋𝐴̃ disagrees with 4

• 𝜋𝐴 ≻ 𝑎∗ ≻ 𝑎′ ≻ 𝜋𝐴̃ disagrees with 2

• 𝜋𝐴 ≻ 𝑎′ ≻ 𝑎∗ ≻ 𝜋𝐴̃ disagrees with 3

The slater ranking is the first one, so the winner is 𝑎′. □

8
Here, we additionally assume that 𝑛 is even (a similar instance, with a third identical alternative added to the set 𝐴 to form

a Condorcet cycle within 𝐴, would work for odd 𝑛, see Appendix B.2 for a similar construction.).
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A.8 Proof of Theorem 3.11
Theorem 3.11. For all positional scoring rules 𝑓 and uniform 𝜸 = 𝛾1 with (fixed) 𝛾 ∈ [0, 1),

dist(𝑓 ,𝜸 ) ∈ Ω(
√
𝑚).

Proof. Let s = (𝑠1, . . . , 𝑠𝑚) denote the (decreasing) scoring vector of 𝑓 , and recall that 𝑠1 = 1,

𝑠𝑚 = 0. Then, there must exist some position 𝑡 ∈ {1, . . . ,
√
𝑚} such that 𝑠𝑡 − 𝑠𝑡+1 ≤ 1/

√
𝑚. We then

construct a utility matrix 𝑈 as pictured in the diagram below (see Appendix A.1 for a primer on

reading these diagrams), where

𝑥 =
1

1 − 𝛾
and 𝑦 = 𝐶 ′/

√
𝑚

and 𝐶,𝐶 ′
are constant to be chosen later.

a′￼

Aa′￼

A 1
x
0

Utilities
…m − 11

Δf

1 − Δf

(A)

(B)

a*
a*

2
≻ ≻
≻ ≻

m

+ϵ

−ϵ

1/2
1/2
0

3 . . . m21

1
y
x

0

w
Utilities
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(B)

(C)

4
a* a′￼ A Ã≻ ≻ ≻

≻ ≻ ≻
≻ ≻ ≻

a′￼

a′￼ a*

Ã

Ã

A a*

A+2ϵ

−ϵ

−ϵ
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x
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t + 1
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≻
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a′￼

a′￼

A 1
x
0

Utilities
…m − 11

1/m
1 − 1/m

(A)

(B)

m

≻
≻A

t

1

x
1
0

Utilities

(A) a′￼ ≻1

…

a*

m

Fraction of voters in each 
group (must add to 1)

Group labels Ranking positions

Numeric utilities 
associated with 
colored bars

2

A ≻

m − 1

Proposed ranking implied 
by the utilities

+ϵ

−ϵ

For the ranking of group (A), we assume that𝐴1 contains alternatives 1, . . . ,𝑚 − 2 occupy the ranks

in cyclically, i.e. that any given alternative 𝑎 = 1, . . . ,𝑚 − 2 occupies any rank 𝑟 ∈ {2, . . . ,𝑚 − 1} in
a 1/(𝑚 − 2) fraction of group (A) (this is permitted since 𝑎 = 1, . . . ,𝑚 − 2 are treated symmetrically,

so we may choose the preference orderings between them arbitrarily when the PS-values are tied.)

Similarly, in group (B) we may assume that the alternatives 1, . . . ,𝑚 − 2 are cycled through the

𝑚 − 2 occupied by 𝐴2 ∪ 𝐴3 – this way their welfares are equal, sw(1,𝑈 ) = · · · = sw(𝑚 − 2,𝑈 ),
and the PS-values are hence always tied between the alternatives within positions 𝐴2, and within

positions 𝐴3.

We now argue that the above utilities induce the the rankings profile shown in the diagram. To

verify the rankings in group (A), we first note that

𝑣𝑖 (𝑎∗,𝜸 ,𝑈 ) = 1 ≤ (1 − 𝛾)𝑢𝑖 (𝑎′) ≤ 𝑣𝑖 (𝑎′,𝜸 ,𝑈 ) .
Moreover, for any 1 ≤ 𝑎 ≤ 𝑚 − 2, since 𝑡 ≤

√
𝑚 we have

sw(𝑎,𝑈 )
𝑛

≤ 𝐶

(1 − 𝛾)
√
𝑚

+ 𝑡 − 1

(1 − 𝛾) (𝑚 − 2) ≤ 𝐶 + 2

(1 − 𝛾)
√
𝑚
.

while for 𝑎′ we have, for any𝑚 large enough such that 𝐶/
√
𝑚 ≤ 1/2,

sw(𝑎′,𝑈 )
𝑛

=
𝐶

(1 − 𝛾)
√
𝑚

+
(
1 − 𝐶

√
𝑚

) 𝐶 ′
√
𝑚

≥ 𝐶

(1 − 𝛾)
√
𝑚

+ 𝐶 ′

2

√
𝑚
.

Thus, for𝐶 ′
chosen large enough (depending on𝛾,𝐶), we obtain that for 𝑎 = 1, . . . ,𝑚−2, sw(𝑎′,𝑈 ) ≥

sw(𝑎,𝑈 ). It follows that also 𝑣𝑖 (𝑎′,𝜸 ,𝑈 ) ≥ 𝑣𝑖 (𝑎,𝜸 ,𝑈 ), and the rankings of group (A) are confirmed.

We now verify the rankings in group (B). For alternatives 𝑎 in positions 𝐴2, we have

𝑣𝑖 (𝑎∗,𝜸 ,𝑈 ) = 1 ≤ (1 − 𝛾)𝑢𝑖 (𝑎) ≤ 𝑣𝑖 (𝑎,𝜸 ,𝑈 ),
so that they indeed rank ahead of 𝑎∗. Since 𝐶 ′

was chosen above such that sw(𝑎′,𝑈 ) ≥ sw(𝑎,𝑈 )
(for all 𝑎 = 1, . . . ,𝑚−2), 𝑎′ is indeed ranked ahead of𝐴3, and sw(𝑎′,𝑈 ) = 𝑂 (1/

√
𝑚) = 𝑜 (sw(𝑎∗,𝑈 )),
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we conclude that 𝑎′ is indeed ranked in the 𝑡 + 1-st position. Thus the positions in group (B) are

confirmed, too.

It remains to verify that in the ranking profile from the diagram, 𝑎′ is indeed the positional scoring

rule winner. For 𝑖 ∈ [𝑛], 𝑎 ∈ [𝑚], let 𝜋−1

𝑖 (𝑎) denote the position that voter 𝑖 ranks alternative 𝑎 in.

Then, we may write the point totals as

𝑃 (𝑎) :=
∑
𝑖∈[𝑛]

𝑠𝜋−1

𝑖
(𝑎) , 𝑎 ∈ [𝑚]

Firstly, 𝑎′ beats 𝑎∗, since

1

𝑛
(𝑃 (𝑎′) − 𝑃 (𝑎∗)) = 𝐶

√
𝑚

−
(
1 − 𝐶

√
𝑚

)
(𝑠𝑡 − 𝑠𝑡+1) ≥

𝐶 − 1

√
𝑚

> 0,

as long as we choose 𝐶 > 1. Secondly, to see that 𝑎′ beats 1, . . . ,𝑚 − 2, we prove that 𝑃 (𝑎′) > 𝑃 (1)
(which suffices because 𝑃 (1) = · · · = 𝑃 (𝑚−2)). Note that the fraction of times alternative 1 occupies

any position 𝑙 ∈ {1, . . . , 𝑡 + 1} is bounded by

|{𝑖 : 𝜋−1

𝑖 (1) ≤ 𝑡 + 1}|
𝑛

=
𝐶
√
𝑚

𝑡

𝑚 − 2

+
(
1 − 𝐶

√
𝑚

) 𝑡 − 1

𝑚
≤ 𝑡

𝑚 − 2

≲
1

√
𝑚
,

where we again used that 𝑡 ≤
√
𝑚. Since 𝑎′ ranks first a 𝐶/

√
𝑚 fraction of times, and otherwise

occupies the (𝑡+1)-th place, wemay enforce that 𝑃 (𝑎′) > 𝑃 (1), by choosing𝐶 > 0 large enough. □

A.9 Proof of Lemma 3.12
Lemma 3.12. For all positional scoring rules 𝑓 and uniform 𝜸 = 𝛾1, 𝛾 ∈ [0, 1], dist(𝑓 ,𝜸 ) ≥ 1−𝛾

𝛾Δ𝑓
+ 1.

Proof. The claim is truewhen𝛾 = 1, because given that all positional scoring rules 𝑓 are unanimous,

dist1 (𝑓 ) = 1. For the remainder of the proof, we will thus consider 𝛾 < 1.

Fix an arbitrary positional scoring rule 𝑓 with gap Δ𝑓 , defined as the gap between the scores given

to the first two positions (i.e., 𝑠1 −𝑠2). Fix some 𝛾 ∈ [0, 1), and let𝜸 = 𝛾1. Now, consider the instance
(𝜸 ,𝑈 ) depicted in the diagram below, where𝑈 is as shown in the following diagram with 𝜖 > 0 and

𝑥 =
𝛾 (1 − Δ𝑓 )

1 − 𝛾 + 𝛾Δ𝑓

⇐⇒ 𝑥 (1 − 𝛾 + 𝛾Δ𝑓 ) = 𝛾 (1 − Δ𝑓 )

a′￼

Aa′￼

A 1
x
0

Utilities
…m − 11

Δf

1 − Δf

(A)

(B)

a*
a*

2
≻ ≻
≻ ≻

m

+ϵ

−ϵ

1/2
1/2
0

3 . . . m21

1
y
x

0

w
Utilities

(A)

(B)

(C)

4
a* a′￼ A Ã≻ ≻ ≻

≻ ≻ ≻
≻ ≻ ≻

a′￼

a′￼ a*

Ã

Ã

A a*

A+2ϵ

−ϵ

−ϵ

a* a′￼ A Ã

C/ m

m1
x

y
1
0

Utilities

(A)

(B)

t + 1

a*a′￼ A1≻

≻ ≻ ≻1 − C/ m

≻

……

a* a′￼A2 A3

a′￼

a′￼

A 1
x
0

Utilities
…m − 11

1/m
1 − 1/m

(A)

(B)

m

≻
≻A

t

1

x
1
0

Utilities

(A) a′￼ ≻1

…

a*

m

Fraction of voters in each 
group (must add to 1)

Group labels Ranking positions

Numeric utilities 
associated with 
colored bars

2

A ≻

m − 1

Proposed ranking implied 
by the utilities

+ϵ

−ϵ

Fig. 1. 𝐴 contains all alternatives other than 𝑎′, 𝑎∗, cycled symmetrically over rankings, and all ±𝜖 are used
for tie-breaking only.

First, we prove two necessary claims, and then analyze the distortion given that 𝑎′ is the winner by 𝑓 .

Claim 1: the utilities imply the proposed rankings. Since 𝑎′ always has PS-values which are always

greater or equal than that of any alternative in 𝐴, we may always rank 𝑎′ ahead of all alternatives
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in 𝐴, and thus the relative rankings of 𝑎′, 𝐴 are correct. Now, we verify the relative orderings of 𝑎∗

and all other alternatives in both groups:

𝑥 =
𝛾 (1 − Δ𝑓 )

1 − 𝛾 + 𝛾Δ𝑓

⇐⇒ 𝑥 (1 − 𝛾 + 𝛾Δ𝑓 ) = 𝛾 (1 − Δ𝑓 )

=⇒ (1 − 𝛾 + 𝛾 (Δ𝑓 + 𝜖))𝑥 > 𝛾 (1 − Δ𝑓 − 𝜖)
⇐⇒ 𝑣𝑖 (𝑎,𝜸 ,𝑈 ) > 𝑣𝑖 (𝑎∗,𝜸 ,𝑈 ) for all 𝑎 ≠ 𝑎∗, 𝑖 ∈ group (A).

We now analyze group (B)’s ranking. Since 𝑢𝑖 (𝑎′) = 𝑢𝑖 (𝑎) for all 𝑖 ∈ [𝑛] and 𝑎 ∈ 𝐴, it suffices to

check that

𝛾sw(𝑎′,𝑈 ) = 𝑣𝑖 (𝑎′,𝜸 ,𝑈 ) ≤ 𝑣𝑖 (𝑎∗,𝜸 ,𝑈 ) for all 𝑖 ∈ group (B).

Since 𝑢𝑖 (𝑎′) = 0 in group (B), it suffices to verify that sw(𝑎′,𝑈 ) ≤ sw(𝑎∗,𝑈 ):
sw(𝑎′,𝑈 ) ≤ sw(𝑎∗,𝑈 ) ⇐⇒ 𝑥 (Δ𝑓 + 𝜖) ≤ (1 − Δ𝑓 − 𝜖)

⇐⇒
𝛾 (Δ𝑓 + 𝜖)

1 − 𝛾 + 𝛾Δ𝑓

(1 − Δ𝑓 ) ≤ (1 − Δ𝑓 − 𝜖)

⇐⇒ 𝛾 (1 − Δ𝑓 ) (Δ𝑓 + 𝜖) ≤ 𝛾 (1 − Δ𝑓 − 𝜖) (Δ𝑓 + 1/𝛾 − 1)
Since we assumed that 𝛾 < 1, clearly we may choose 𝜖 > 0 small enough such that the inequality

in the last line holds true. This confirms the rankings in group (B).

Claim 2: 𝑎′ is the winner per the proposed rankings. 𝑎′ is always ranked ahead of all 𝑎 ∈ 𝐴, so 𝑎′

must receive a higher score than all these alternatives. 𝑎′ also receives more points than 𝑎∗: 𝑎′

receives Δ𝑓 + 𝜖 + (1 − Δ𝑓 − 𝜖) (1 − Δ𝑓 ) > 1 − Δ𝑓 points, which is larger than the 1 − Δ𝑓 − 𝜖 points

received by 𝑎∗.

Now, to analyze the distortion we let 𝜖 → 0:

dist𝜸 (𝑓 ) ≥
sw(𝑎∗,𝑈 )
sw(𝑎′,𝑈 )

𝜖→0−−−→
1 − Δ𝑓

Δ𝑓 𝑥
=

1 − 𝛾

𝛾Δ𝑓

+ 1.

□

A.10 Proof of Proposition 3.15
Proposition 3.15. For all uniform 𝜸 = 𝛾1, 𝛾 ∈ [0, 1], dist(Plurality,𝜸 ) ≥ 𝑚 · 1−𝛾

𝛾
+ 1.

Proof. Fix an arbitrary uniform 𝜸 = 1𝛾 and let𝑈 be the utility matrix depicted in the following

diagram, where all alternatives in 𝐴 are cycled symmetrically, and

𝑥 =
𝛾 (𝑚 − 1)/𝑚
1 − 𝛾 + 𝛾/𝑚

a′￼

Aa′￼

A 1
x
0

Utilities
…m − 11

Δf

1 − Δf

(A)

(B)

a*
a*

2
≻ ≻
≻ ≻

m
+ϵ

+ϵ

−ϵ
+ϵ

1/2
1/2
0

3 . . . m21

1
y
x

0

w
Utilities

(A)

(B)

(C)

4
a* a′￼ A Ã≻ ≻ ≻

≻ ≻ ≻
≻ ≻ ≻

a′￼

a′￼ a*

Ã

Ã

A a*

A+2ϵ

−ϵ

−ϵ

+ϵ′￼
a* a′￼ A Ã

C/ m

m1
x

y
1
0

Utilities

(A)

(B)

t + 1

a*a′￼ A1≻

≻ ≻ ≻1 − C/ m

≻

……

a* a′￼A2 A3

a′￼

a′￼

A 1
x
0

Utilities
…m − 11

1/m
1 − 1/m

(A)

(B)

m

≻
≻A

t
+ϵ

+ϵ

+ϵ/2

1

x
1
0

Utilities

(A) a′￼ ≻1

…

a*

m

Fraction of voters in each 
group (must add to 1)

Group labels Ranking positions

Numeric utilities 
associated with 
colored bars

2
+ϵ

A ≻

m − 1

Proposed ranking implied 
by the utilities

+ϵ

−ϵ

The average utilities of the alternatives are then the following: sw(𝑎′,𝑈 )/𝑛 = 𝑥 (1/𝑚+𝜖) = 𝑥/𝑚+𝑥𝜖 ,
and for all 𝑎 ∈ 𝐴, sw(𝑎,𝑈 )/𝑛 = (𝑚 − 1)/𝑚−𝜖 .
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Claim 1. The proposed rankings are realized by the utilities.We confirm each ranking left to right

by comparing voters’ PS-values, per Equation (2).

Let 𝑖 ∈ group (A) and 𝑎 ∈ 𝐴. Then,

𝑣𝑖 (𝑎′,𝜸 ,𝑈 ) = 𝑥 (1 − 𝛾 + 𝛾 (1/𝑚 + 𝜖)) = 𝑥 (1 − 𝛾 + 𝛾/𝑚)+𝑥𝜖 =

(
𝛾 (𝑚 − 1)/𝑚
1 − 𝛾 + 𝛾/𝑚

)
(1 − 𝛾 + 𝛾/𝑚)+𝑥𝜖

= 𝛾 (𝑚 − 1)/𝑚+𝑥𝜖
𝑣𝑖 (𝑎,𝜸 ,𝑈 ) = 𝛾 (1 − 1/𝑚 − 𝜖) = 𝛾 (𝑚 − 1)/𝑚−𝛾𝜖

Let 𝑖 ∈ group (B) and 𝑎 ∈ 𝐴. Then,

𝑣𝑖 (𝑎,𝜸 ,𝑈 ) = 1 − 𝛾 + 𝛾 (1 − 1/𝑚 − 𝜖) = 1 − 𝛾/𝑚−𝛾𝜖

𝑣𝑖 (𝑎′,𝜸 ,𝑈 ) = 𝛾 (1/𝑚 + 𝜖)𝑥 = 𝛾𝑥/𝑚+𝛾𝑥𝜖 = 𝛾/𝑚 ·
(
𝛾 (𝑚 − 1)/𝑚
1 − 𝛾 + 𝛾/𝑚

)
+𝛾𝑥𝜖

= 𝛾/𝑚 ·
(

1

1 − 𝛾 + 𝛾/𝑚 − 1

)
+𝛾𝑥𝜖

=
𝛾/𝑚

1 − 𝛾 + 𝛾/𝑚 − 𝛾/𝑚+𝛾𝑥𝜖

< 1 − 𝛾/𝑚−𝛾𝜖

Where the last step holds for sufficiently small 𝜖 , and 𝛾/𝑚 ≤ 1 − 𝛾/𝑚 holds when𝑚 ≥ 2.

Claim 2. 𝑎′ is the winner. 𝑎′ is the Plurality winner because it is ranked first a 1/𝑚 + 𝜖 fraction of

the time, while all other alternatives 𝑎 ∈ 𝐴 are ranked first a 1/𝑚 − 𝜖/(𝑚 − 1) fraction of the time.

By Claims 1 and 2, the distortion in this instance approaches the following as 𝜖 → 0 (where 𝑎 is an

arbitrary alternative in 𝐴):

sw(𝑎,𝑈 )
sw(𝑎′,𝑈 ) =

(𝑚 − 1)/𝑚
𝑥/𝑚 = (𝑚 − 1) · 1 − 𝛾 + 𝛾/𝑚

𝛾 (𝑚 − 1)/𝑚 =
1 − 𝛾

𝛾
𝑚 + 1. □

A.11 Proof of Proposition 3.16
Proposition 3.16. For all uniform 𝜸 = 𝛾1, dist(Maximin,𝜸 ) ≥ (𝑚 − 1) · 1−𝛾

𝛾
+ 1.

Proof. We first specify a preference profile 𝝅 with𝑚 alternatives in which 𝑎′ is the winner, i.e.,
Maximin(𝝅) = 𝑎′; we will later show that 𝝅 can be realized by suitable utilities.

We split the population into two groups, A and B:

• Group A is of size 𝑛/(𝑚 − 1), and voters 𝑖 in group A rank

𝑎′ ≻
𝑖
all other𝑚 − 1 alternatives.

• Group B contains the rest of the voters, i.e. is of size 𝑛(𝑚 − 2)/(𝑚 − 1). In this group, voters 𝑖

have ranking of the form

all other𝑚 − 1 alternatives ≻𝜋𝑖 𝑎
′.
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In these rankings, we assume that the𝑚 − 1 non-winning alternatives (call them 1 . . .𝑚 − 1) are

ranked cyclically – that is, each group is further divided into𝑚 − 1 subgroups of equal size, where

voters 𝑖 in the respective 𝑘-th subgroups rank

𝑘 ≻𝜋𝑖 𝑘 + 1 ≻𝜋𝑖 · · · ≻𝜋𝑖 𝑚 − 1 ≻𝜋𝑖 1 ≻𝜋𝑖 · · · ≻𝜋𝑖 𝑘 − 1.

We now verify that indeed 𝑎′ = Maximin(𝝅). Firstly, 𝑎′ performs equally well in all comparisons

with other alternatives, i.e.

max

𝑎≠𝑎′
|{𝑖 : 𝑎 ≻𝜋𝑖 𝑎

′}| = |{𝑖 : 1 ≻𝜋𝑖 𝑎
′}| = 𝑛 − 𝑛

𝑚 − 1

= 𝑛
𝑚 − 2

𝑚 − 1

.

On the other hand, for each of the remaining alternatives 𝑘 = 1, . . . ,𝑚 − 1, their worst defeat comes

from the preceding alternative 𝑘 − 1 (for 𝑘 = 1, this alternative is𝑚 − 1) – in particular, the cyclical

rankings in both Group 1 and 2 immediately imply that

max

𝑎≠𝑘
|{𝑖 : 𝑎 ≻𝜋𝑖 𝑘}| = |{𝑖 : 𝑘 − 1 ≻𝜋𝑖 𝑘}| = 𝑛

𝑚 − 2

𝑚 − 1

≥ max

𝑎≠𝑎′
|{𝑖 : 𝑎 ≻𝜋𝑖 𝑎

′}|,

confirming that 𝑎′ wins the election.

We now specify the utilities as follows.

• In Group A, voters 𝑖 have 𝑢𝑖 (𝑎′) = 𝛾 (𝑚−2)
(1−𝛾 ) (𝑚−1)+𝛾 and 𝑢𝑖 (𝑎) = 0 for all remaining alternatives.

• InGroup B, voters 𝑖 have𝑢𝑖 (𝑎′) = 0 and𝑢𝑖 (𝑎) = 1 for all remaining alternatives 𝑎 = 1, . . . ,𝑚−1.

The cyclical rankings amongst 𝑎 = 1, . . . ,𝑚 − 1 can be realized since we have treated those

alternatives symmetrically, so that 𝑣𝑖 (𝑎,𝜸 ,𝑈 ) are tied for all 𝑖 ∈ [𝑛] and 𝑎 = 1, . . . ,𝑚 − 1. The

ranking of voters in group 𝐵 is confirmed by comparison of social welfares and utilities. 𝑎′ is ranked
ahead of all other 𝑎 for all 𝑖 in Group A by the following reasoning:

𝑣𝑖 (𝑎′,𝜸 ,𝑈 ) = (1 − 𝛾)𝑢𝑖 (𝑎′) + sw(𝑎′,𝑈 )

= (1 − 𝛾) 𝛾 (𝑚 − 2)
(1 − 𝛾) (𝑚 − 1) + 𝛾 + 𝛾

𝑚 − 1

𝛾 (𝑚 − 2)
(1 − 𝛾) (𝑚 − 1) + 𝛾

= (1 − 𝛾 + 𝛾

𝑚 − 1

) 𝛾 (𝑚 − 2)
(𝑚 − 1) [(1 − 𝛾) + 𝛾/(𝑚 − 1)]

= 𝛾
𝑚 − 2

𝑚 − 1

= 𝑣𝑖 (𝑎,𝜸 ,𝑈 ).

Since we may assume worst-case tie breaking, we may rank 𝑎′ ahead of 𝑎. Note that in this profile,

all the alternatives 𝑎 = 1, . . . ,𝑚 − 1 have equal social welfare. Fixing any such 𝑎, the distortion in

this instance is

sw(𝑎,𝑈 )
sw(𝑎′,𝑈 ) =

𝑚 − 2

𝑚 − 1

· 𝑚 − 1

𝛾 (𝑚−2)
(1−𝛾 ) (𝑚−1)+𝛾

=
(1 − 𝛾) (𝑚 − 1) + 𝛾

𝛾
. □
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B SUPPLEMENTAL MATERIAL FOR SECTION 4
In this appendix, we will often apply the following lemma:

Lemma B.1. For any utility matrix, decreasing a voter 𝑖’s level of public spirit cannot result in them

promoting a higher-welfare alternative over a lower-welfare alternative in their ranking.

Proof. Fix an arbitrary utility matrix 𝑈 , arbitrary voter 𝑖 , and 𝜸 , 𝜸̃ which differ in that 𝛾𝑖 < 𝛾𝑖
(they may also differ in other ways— it is irrelevant to this proof). Fix corresponding profiles

𝝅 ∈ Π𝑉 (𝜸 ,𝑈 ) and 𝝅̃ ∈ Π𝑉 (𝜸̃ ,𝑈 ) . Let 𝑎, 𝑎
′
be an arbitrary pair of alternatives such that 𝑎′ ≻𝜋𝑖 𝑎 and

sw(𝑎,𝑈 ) ≥ sw(𝑎′,𝑈 ) (if no such pair exists, because 𝑖’s alternatives are ranked in decreasing order

of welfare, and thus we are done because 𝑖 cannot promote a higher-welfare alternative over a

lower-welfare alternative). We will show that 𝑎 cannot be promoted over 𝑎′ from 𝜋𝑖 to 𝜋̃𝑖—that is,

𝑎′ ≻𝜋̃𝑖 𝑎, thereby showing the claim.

First, observe that because 𝑎 has greater social welfare than 𝑎′, 𝑖 must have higher utility for 𝑎′

than 𝑎 to create their relative ranking in 𝜋𝑖 :

𝑎′ ≻𝜋𝑖 𝑎 =⇒ 𝑢𝑖 (𝑎′) > 𝑢𝑖 (𝑎).
Then, by 𝛾𝑖 < 𝛾𝑖 , sw(𝑎′,𝑈 ) − sw(𝑎,𝑈 ) < 0 and 𝑢𝑖 (𝑎′) − 𝑢𝑖 (𝑎) > 0,

𝑣𝑖 (𝑎′, 𝜸̃ ,𝑈 ) − 𝑣𝑖 (𝑎, 𝜸̃ ,𝑈 ) = (1 − 𝛾𝑖 ) (𝑢𝑖 (𝑎′) − 𝑢𝑖 (𝑎)) + 𝛾𝑖 (sw(𝑎′,𝑈 ) − sw(𝑎,𝑈 ))
> (1 − 𝛾𝑖 ) (𝑢𝑖 (𝑎′) − 𝑢𝑖 (𝑎)) + 𝛾𝑖 (sw(𝑎′,𝑈 ) − sw(𝑎,𝑈 ))
= 𝑣𝑖 (𝑎′,𝜸 ,𝑈 ) − 𝑣𝑖 (𝑎,𝜸 ,𝑈 ) > 0.

The inequality deduced above concludes the proof: 𝑣𝑖 (𝑎′, 𝜸̃ ,𝑈 ) − 𝑣𝑖 (𝑎, 𝜸̃ ,𝑈 ) > 0 =⇒ 𝑎′ ≻𝜋̃𝑖 𝑎. □

B.1 Proof of Proposition 4.5
Proposition 4.5. If𝑚 ≤ 3, then all voting rules exhibit nonuniform monotonicity.

We prove this for𝑚 = 2 and𝑚 = 3 separately, though the arguments use the same overall strategy.

We present the proof of the 𝑚 = 2 case more gently as a warm-up, to illustrate the high-level

approach; the proof of𝑚 = 3 requires more careful handling of additional technicalities.

Proposition 4.5(a). When𝑚 = 2, all voting rules exhibit nonuniform monotonicity.

Proof. Fix an arbitrary resolute voting rule 𝑓 , and suppose our two alternatives are 𝑎, 𝑏. To show

the claim, it suffices to show that, starting with an instance 𝜸 ,𝑈 and given a 𝜸̃ which only differs

from 𝜸 in that 𝛾1 < 𝛾1 (i.e., only a single voter’s public spirit is decreased), we can find some 𝑈̃ with

the following two properties:

• Property 1: sw(𝑎,𝑈 ) = sw(𝑎, 𝑈̃ ) and sw(𝑏,𝑈 ) = sw(𝑏, 𝑈̃ )

• Property 2: Π𝑉 (𝜸 ,𝑈 ) ⊆ Π𝑉 (𝜸̃ ,𝑈̃ ) .

Together these properties imply that dist(𝑓 ,𝜸 ,𝑈 ) ≤ dist(𝑓 , 𝜸̃ , 𝑈̃ ).

Construction of 𝑈̃ . Note that for all 𝑖 > 1, we immediately have that 𝑣𝑖 (𝑎,𝜸 ,𝑈 ) = 𝑣𝑖 (𝑎, 𝜸̃ ,𝑈 ) and
𝑣𝑖 (𝑏,𝜸 ,𝑈 ) = 𝑣𝑖 (𝑏, 𝜸̃ ,𝑈 ). Then, if it is already the case voter 1’s values under𝑈 match ordinally across

𝜸 , 𝜸̃ — that is 𝑣1 (𝑎,𝜸 ,𝑈 ) ≥ 𝑣1 (𝑏,𝜸 ,𝑈 ) and 𝑣1 (𝑎, 𝜸̃ ,𝑈 ) ≥ 𝑣1 (𝑏, 𝜸̃ ,𝑈 ), or 𝑣1 (𝑏,𝜸 ,𝑈 ) ≥ 𝑣1 (𝑎,𝜸 ,𝑈 ) and
𝑣1 (𝑏, 𝜸̃ ,𝑈 ) ≥ 𝑣1 (𝑎, 𝜸̃ ,𝑈 )— then we are done: set 𝑈̃ = 𝑈 , and we automatically get properties 1 and

2.
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Else, we have that 𝑣1 (𝑎,𝜸 ,𝑈 ) ≥ 𝑣1 (𝑏,𝜸 ,𝑈 ) and 𝑣1 (𝑏, 𝜸̃ ,𝑈 ) ≥ 𝑣1 (𝑎, 𝜸̃ ,𝑈 ), where moreover, one of

these inequalities is strict. Then, we have the following facts:

Fact B.2. By Lemma B.1 and 𝛾1 < 𝛾1, sw(𝑏,𝑈 ) < sw(𝑎,𝑈 ).
Fact B.3. By the fact that 𝑣1 (𝑏, 𝜸̃ ,𝑈 ) > 𝑣1 (𝑎, 𝜸̃ ,𝑈 ) and Fact B.2, 𝑢1 (𝑏) > 𝑢1 (𝑎).
Let𝑁 ′

be the set of all voters 𝑖 for whom𝑢𝑖 (𝑎) > 𝑢𝑖 (𝑏). Note that by Fact B.2, 𝑣𝑖 (𝑎,𝜸 ,𝑈 ) > 𝑣𝑖 (𝑏,𝜸 ,𝑈 )
for all 𝑖 ∈ 𝑁 ′

. We now show Equation (7), which states that in order for sw(𝑎,𝑈 ) ≥ sw(𝑏,𝑈 ), the
gap between voters’ utilities for 𝑎 and 𝑏 in 𝑁 ′

must at least compensate for the gap between voter

1’s utilities for 𝑏 and 𝑎:

0 ≤ sw(𝑎,𝑈 ) − sw(𝑏,𝑈 ) = −(𝑢1 (𝑏) − 𝑢1 (𝑎)) +
∑

𝑖∈𝑁 \{1}
(𝑢𝑖 (𝑎) − 𝑢𝑖 (𝑏))

≤ −(𝑢1 (𝑏) − 𝑢1 (𝑎)) +
∑
𝑖∈𝑁 ′

(𝑢𝑖 (𝑎) − 𝑢𝑖 (𝑏)) .

and we conclude ∑
𝑖∈𝑁 ′

(𝑢𝑖 (𝑎) − 𝑢𝑖 (𝑏)) ≥ 𝑢1 (𝑏) − 𝑢1 (𝑎). (7)

Then, by Equation (7), there must exist some vector of non-negative real numbers 𝜹 = (𝛿𝑖 : 𝑖 ∈ 𝑁 ′)
such that

0 ≤ 𝛿𝑖 ≤ 𝑢𝑖 (𝑎) − 𝑢𝑖 (𝑏) for all 𝑖 ∈ 𝑁 ′
and

∑
𝑖∈𝑁 ′

𝛿𝑖 ≥ 𝑢1 (𝑏) − 𝑢1 (𝑎).

Fix this vector 𝜹 , and use it to construct 𝑈̃ in the followingway: first, for all voters 𝑖 , set 𝑢̃𝑖 (𝑏) = 𝑢𝑖 (𝑏).
Then, set voters’ utilities for 𝑎 as follows:

• 𝑢̃1 (𝑎) = 𝑢1 (𝑎) +
∑

𝑖∈𝑁 ′ 𝛿𝑖 ,

• for all 𝑖 ∈ 𝑁 ′
, 𝑢̃𝑖 (𝑎) = 𝑢𝑖 (𝑎) − 𝛿𝑖 , and

• for all other 𝑖 , 𝑢̃𝑖 (𝑎) = 𝑢𝑖 (𝑎).

By inspection, per this construction we have Property 1: that sw(𝑎,𝑈 ) = sw(𝑎, 𝑈̃ ) and sw(𝑏,𝑈 ) =
sw(𝑏, 𝑈̃ ).

Finally, we show Property 2, that Π𝑉 (𝜸 ,𝑈 ) ⊆ Π𝑉 (𝜸̃ ,𝑈̃ ) . First for all voters 𝑖 ∈ 𝑁 ′ ∪ {1}, we have by
the construction above that 𝑢̃𝑖 (𝑎) ≥ 𝑢̃𝑖 (𝑏); By Property 1, we also have that sw(𝑎, 𝑈̃ ) > sw(𝑏, 𝑈̃ ).
Thus, 𝑣𝑖 (𝑎, 𝜸̃ , 𝑈̃ ) > 𝑣𝑖 (𝑏, 𝜸̃ , 𝑈̃ ). This is consistent with the fact that 𝑣𝑖 (𝑎,𝜸 ,𝑈 ) > 𝑣𝑖 (𝑏,𝜸 ,𝑈 ) for all
𝑖 ∈ 𝑁 ′ ∪ {1}, as fixed earlier in the proof. For all remaining voters 𝑖 ∉ 𝑁 ′ ∪ {1}, we did not change

their utilities from𝑈 to 𝑈̃ , so we have that 𝑣𝑖 (𝑎, 𝜸̃ , 𝑈̃ ) = 𝑣𝑖 (𝑎,𝜸 ,𝑈 ) and 𝑣𝑖 (𝑏, 𝜸̃ , 𝑈̃ ) = 𝑣𝑖 (𝑏,𝜸 ,𝑈 ). We

conclude that all PS-values are ordinally consistent for all voters across 𝑉 (𝜸 ,𝑈 ) and 𝑉 (𝜸̃ , 𝑈̃ ), and
thus Π𝑉 (𝜸 ,𝑈 ) ⊆ Π𝑉 (𝜸̃ ,𝑈̃ ) , concluding the proof. □

Proposition 4.5(b). When m = 3, all voting rules exhibit nonuniform monotonicity.

Proof. Fix an arbitrary 𝑓 . Fix𝑈 and 𝜸̃ < 𝜸 where 𝛾1 < 𝛾1 and 𝛾𝑖 = 𝛾𝑖 for all 𝑖 > 1. We will prove the

claim by showing that we can find some other utility matrix 𝑈̃ so that dist(𝑓 ,𝜸 ,𝑈 ) ≤ dist(𝑓 , 𝜸̃ , 𝑈̃ ).

For notational convenience, for any instance (𝜸 ,𝑈 ) wewill write 𝝅𝜸 ,𝑈
to denote a profile compatible

with (𝜸 ,𝑈 ). Fix an arbitrary 𝝅𝜸 ,𝑈
, and fix another profile 𝝅𝜸̃ ,𝑈

with the same tie-breaking when

PS-values are equal. Note that these two profiles may differ only in voter 1’s ranking (and if they
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don’t, we can set 𝑈̃ = 𝑈 and we are done). This proof will be conceptually similar to that of

Proposition 4.5(a), except that instead of correcting one pairwise ranking, we must correct multiple

in succession.

Define the swap(𝜋, 𝑎, 𝑏) function as one that intakes a ranking and two alternatives that are ranked

adjacently in 𝜋 , and outputs the ranking in which they are swapped; e.g., swap(𝑏 ≻ 𝑎, 𝑏, 𝑎) = 𝑎 ≻ 𝑏.

Now, define a sequence of unique pairwise swaps of alternatives adjacent in 𝜋
𝜸̃ ,𝑈
1

such that, if

made, would transform 𝜋
𝜸̃ ,𝑈
1

into 𝜋
𝜸 ,𝑈
1

. Let this sequence be (𝑎1, 𝑏1), (𝑎2, 𝑏2), . . . , (𝑎𝑇 , 𝑏𝑇 ) where,
by convention, we are swapping 𝑏𝑡 ≻ 𝑎𝑡 → 𝑎𝑡 ≻ 𝑏𝑡 . That is, if we apply swap successively to 𝜋

𝜸̃ ,𝑈
1

for alternatives 𝑎1, 𝑏1 . . . 𝑎𝑇 , 𝑏𝑇 , we will get 𝜋
𝜸 ,𝑈
1

.

By Lemma B.4 (below), we can define a sequence of utility matrices 𝑈̃1, 𝑈̃2, . . . 𝑈̃𝑇 such that

• Property 1: 𝜋
𝑈̃𝑡 ,𝜸̃
𝑖

= 𝜋
𝜸 ,𝑈
𝑖

for all 𝑖 ≠ 1, 𝑡 ∈ [𝑇 ]
(the rankings of all voters other than 1 are preserved in step 𝑡 )

• Property 2 𝜋
𝑈̃𝑡+1,𝜸̃
1

= swap(𝜋𝑈̃𝑡 ,𝜸̃
1

, 𝑏𝑡+1, 𝑎𝑡+1) for all 𝑡 ∈ [𝑇 − 1]
(so 1’s pairwise mis-ordering of 𝑎𝑡+1 and 𝑏𝑡+1 is corrected in the 𝑡 + 1-st step)

• Property 3: sw(𝑎,𝑈 ) = sw(𝑎, 𝑈̃𝑡 ) for all 𝑎 ∈ [𝑚], 𝑡 ∈ [𝑇 ]
(the welfares are preserved in step 𝑡 )

It follows that 𝝅𝑈̃𝑇 ,𝜸̃ = 𝝅𝜸 ,𝑈
and sw(𝑎,𝑈 ) = sw(𝑎, 𝑈̃𝑇 ), together implying that

dist(𝑓 ,𝜸 ,𝑈 ) = dist(𝑓 , 𝜸̃ , 𝑈̃𝑇 ),

concluding the proof. □

Lemma B.4. Let𝑚 = 3. Fix arbitrary 𝑈 and 𝜸 > 𝜸̃ , where 𝛾1 < 𝛾1 but all other voters’ entries are

identical. Let alternatives 𝑎, 𝑏 be such that 𝑎 ≻
𝜋
𝜸 ,𝑈
1

𝑏 and 𝑏 ≻
𝜋
𝜸̃ ,𝑈
1

𝑎, where 𝑎 and 𝑏 are ranked

adjacently in 𝜋
𝜸̃ ,𝑈
1

. Then, there exists a 𝑈̃ such that:

• Property 1 𝜋
𝜸̃ ,𝑈̃
𝑖

= 𝜋
𝜸 ,𝑈
𝑖

for all 𝑖 ≠ 1

(the rankings of all voters other than 1 are preserved)

• Property 2 𝜋
𝜸̃ ,𝑈̃
1

= swap(𝜋𝜸̃ ,𝑈
1

, 𝑏, 𝑎)
(so 1’s pairwise mis-ordering of 𝑎 and 𝑏 is corrected)

• Property 3: sw(𝑎,𝑈 ) = sw(𝑎, 𝑈̃ ) for all 𝑎 ∈ [𝑚]
(the welfares are preserved)

Proof. We begin by establishing a series of facts:

Fact B.5. By the fact that 𝑎, 𝑏 were in the list of pairwise swaps, 𝑎 ≻
𝜋
𝜸 ,𝑈
1

𝑏 and 𝑏 ≻
𝜋
𝜸̃ ,𝑈
1

𝑎.

Fact B.6. By Lemma B.1, the fact that 𝑏 ≻
𝜋
𝜸̃ ,𝑈
1

𝑎, and 𝛾1 < 𝛾1,

sw(𝑏,𝑈 ) ≤ sw(𝑎,𝑈 ).
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Fact B.7. By Fact B.5 and Fact B.6,
9
we have that

𝑢1 (𝑏) > 𝑢1 (𝑎).

Now, define our set of voters 𝑁 ′
as in the𝑚 = 2 proof, i.e., as the set of all voters 𝑖 ∈ [𝑛] such that

𝑢𝑖 (𝑎) > 𝑢𝑖 (𝑏) (and thus, given Fact B.6, 𝑎 ≻
𝜋
𝑈 ,𝜸̃
𝑖

𝑏). Then, we know that by the same argument as

before, using Facts B.6 and B.7, that∑
𝑖∈𝑁 ′

(𝑢𝑖 (𝑎) − 𝑢𝑖 (𝑏)) > 𝑢1 (𝑏) − 𝑢1 (𝑎). (8)

Now, we have that for all 𝑖 ∈ 𝑁 ′
, we have that 𝑎 ≻

𝜋
𝑈 ,𝜸̃
𝑖

𝑏. Let 𝑐 be the third, remaining alternative

that is not equal to 𝑎 or 𝑏. Then, a voter 𝑖 ∈ 𝑁 ′
can have one of three possible rankings in 𝝅𝑈 ,𝜸̃

:

(1) 𝑎 ≻ 𝑏 ≻ 𝑐 , (2) 𝑐 ≻ 𝑎 ≻ 𝑏, or (3) 𝑎 ≻ 𝑐 ≻ 𝑏.

We will now prove three claims, one per ranking, which will lay the foundations for our later

construction of 𝑈̃ . We use 𝑁 ′
(1) to mean the set of voters in 𝑁 ′

with ranking (1), and likewise for (2)

and (3).

Claim 1: For all voters 𝑖 ∈ 𝑁 ′
(1) and for all 𝛿1

𝑖 ∈ [0, 𝑢𝑖 (𝑎) − 𝑢𝑖 (𝑏)],

𝑣𝑖 (𝑎, 𝜸̃ ,𝑈 ) ≥ (1 − 𝛾𝑖 ) (𝑢𝑖 (𝑏) + 𝛿𝑖 ) + 𝛾𝑖sw(𝑏,𝑈 ) ≥ 𝑣𝑖 (𝑐, 𝜸̃ ,𝑈 ) .
The first inequality holds by Fact B.6 combined with 𝛿𝑖 being defined in [𝑢𝑖 (𝑏), 𝑢𝑖 (𝑎)]. The second
inequality is implied by the fact that 𝑣𝑖 (𝑏, 𝜸̃ ,𝑈 ) ≥ 𝑣𝑖 (𝑐, 𝜸̃ ,𝑈 ), inferred from the fact that 𝑏 ≻

𝜋
𝑈 ,𝜸̃
𝑖

𝑐

(i.e., 𝑖 ranks 𝑏 ahead of 𝑐).

Claim 2: For all voters 𝑖 ∈ 𝑁 ′
(2) , and for all 𝛿𝑖 ∈ [0, 𝑢𝑖 (𝑎) − 𝑢𝑖 (𝑏)],

𝑣𝑖 (𝑐, 𝜸̃ ,𝑈 ) ≥ (1 − 𝛾𝑖 ) (𝑢𝑖 (𝑎) − 𝛿𝑖 ) + 𝛾𝑖sw(𝑎,𝑈 ) ≥ 𝑣𝑖 (𝑏, 𝜸̃ ,𝑈 ).
Proof of Claim 2: The proof is essentially the same as that of Claim 1: The first inequality is implied

by the fact that 𝑣𝑖 (𝑐, 𝜸̃ ,𝑈 ) ≥ 𝑣𝑖 (𝑎, 𝜸̃ ,𝑈 ), inferred from the fact that 𝑖 ranks 𝑐 ahead of 𝑎, and the

second inequality holds by Fact B.6 combined with 𝛿𝑖 being defined in [𝑢𝑖 (𝑏), 𝑢𝑖 (𝑎)].

Claim 3: For all voters 𝑖 ∈ 𝑁 ′
(3) , there exists some 𝑢∗

in the following interval[
𝑢𝑖 (𝑐) +

𝛾𝑖 (sw(𝑐,𝑈 ) − sw(𝑎,𝑈 ))
(1 − 𝛾𝑖 )𝑛

, 𝑢𝑖 (𝑐) +
𝛾𝑖 (sw(𝑐,𝑈 ) − sw(𝑏,𝑈 ))

(1 − 𝛾𝑖 )𝑛

]
,

such that 𝑢∗
is also in the interval [𝑢𝑖 (𝑏), 𝑢𝑖 (𝑎)] and satisfies

(1 − 𝛾𝑖 )𝑢∗ + 𝛾𝑖sw(𝑎)/𝑛 ≥ 𝑢
𝜸̃
𝑖
(𝑐) ≥ (1 − 𝛾𝑖 )𝑢∗ + 𝛾𝑖sw(𝑏)/𝑛. (9)

Proof of Claim 3: By Fact B.6, the upper end of the interval is indeed at least the lower end, so

there can exist a 𝑢∗
, as this is a non-empty region of the real line. Second, fixing any 𝑢∗

in this

interval, the chain of inequalities in (9) is proven by simply rearranging the given fact that 𝑢∗
is in

the provided interval. Finally, the given interval must overlap the interval [𝑢𝑖 (𝑏), 𝑢𝑖 (𝑎)], so we can

9
This is strict for the same reason as in the𝑚 = 2 case.
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choose some 𝑢∗
within both intervals. We show in two steps. First, the upper end of the interval is

weakly larger than 𝑢𝑖 (𝑏):

𝑣𝑖 (𝑏, 𝜸̃ ,𝑈 ) ≤ 𝑣𝑖 (𝑐, 𝜸̃ ,𝑈 ) ⇐⇒ (1 − 𝛾𝑖 )𝑢𝑖 (𝑏) + 𝛾𝑖sw(𝑏,𝑈 )/𝑛 ≤ (1 − 𝛾𝑖 )𝑢𝑖 (𝑐) + 𝛾𝑖sw(𝑐,𝑈 )/𝑛

⇐⇒ 𝑢𝑖 (𝑐) +
𝛾𝑖 (sw(𝑐,𝑈 ) − sw(𝑏,𝑈 ))

(1 − 𝛾𝑖 )𝑛
≥ 𝑢𝑖 (𝑏).

And the lower end of the interval is at most 𝑢𝑖 (𝑎):

𝑣𝑖 (𝑎, 𝜸̃ ,𝑈 ) ≤ 𝑣𝑖 (𝑐, 𝜸̃ ,𝑈 ) ⇐⇒ (1 − 𝛾𝑖 )𝑢𝑖 (𝑎) + 𝛾𝑖sw(𝑎,𝑈 )/𝑛 ≥ (1 − 𝛾𝑖 )𝑢𝑖 (𝑐) + 𝛾𝑖sw(𝑐,𝑈 )/𝑛

⇐⇒ 𝑢𝑖 (𝑐) +
𝛾𝑖 (sw(𝑐,𝑈 ) − sw(𝑏,𝑈 ))

(1 − 𝛾𝑖 )𝑛
≤ 𝑢𝑖 (𝑎).

End of proof of Claim 3.

Claim 4 (Corollary of Claim 3). For arbitrary 𝑢∗
satisfying the conditions of Claim 3, for all

𝛿
3,𝑎
𝑖

∈ [0, 𝑢𝑖 (𝑎) − 𝑢∗], 𝑖 ∈ 𝑁 ′
(3) and all 𝛿

3,𝑏
𝑖

∈ [0, 𝑢∗ − 𝑢𝑖 (𝑏)], 𝑖 ∈ 𝑁 ′
(3) , we have that

(1 − 𝛾𝑖 ) (𝑢𝑖 (𝑎) − 𝛿
3,𝑎
𝑖

) + 𝛾𝑖sw(𝑎)/𝑛 ≥ (1 − 𝛾𝑖 )𝑢∗ + 𝛾𝑖sw(𝑎)/𝑛 (9)
≥ 𝑣𝑖 (𝑐, 𝜸̃ ,𝑈 )
≥ (1 − 𝛾𝑖 )𝑢∗ + 𝛾𝑖sw(𝑏)/𝑛 (9)
≥ (1 − 𝛾𝑖 ) (𝑢𝑖 (𝑏) + 𝛿3,𝑏) + 𝛾𝑖sw(𝑎)/𝑛.

Choosing the 𝜹s. Taking the 𝛿1,𝑎
𝑖
, 𝛿

2,𝑏
𝑖
, 𝛿

3,𝑎
𝑖

and 𝛿
3,𝑏
𝑖

and their domains from Claims 1, 2, and 4, we

have that

0 ≤
∑

𝑖∈𝑁 ′
(1)

𝛿
1,𝑎
𝑖

+
∑

𝑖∈𝑁 ′
(2)

𝛿
2,𝑏
𝑖

+
∑

𝑖∈𝑁 ′
(3)

(𝛿3,𝑎
𝑖

+ 𝛿
3,𝑏
𝑖

)

≤
∑

𝑖∈𝑁 ′
(1)∪𝑁

′
(2)

(𝑢𝑖 (𝑎) − 𝑢𝑖 (𝑏)) +
∑

𝑖∈𝑁 ′
(3)

(𝑢𝑖 (𝑎) − 𝑢∗) + (𝑢∗ − 𝑢𝑖 (𝑏))

=
∑
𝑖∈𝑁 ′

𝑢𝑖 (𝑎) − 𝑢𝑖 (𝑏)

> 𝑢1 (𝑏) − 𝑢1 (𝑎). (8)

Thus, for any constant 𝑡 ∈ [0, 𝑢1 (𝑏) − 𝑢1 (𝑎)], there must exist settings of these deltas so that their

sum over 𝑖 ∈ 𝑁 ′
is equal to 𝑡 . We will choose 𝛿∗ values 𝛿∗1,𝑎

𝑖
for all 𝑖 ∈ 𝑁 (1) , 𝛿

∗2,𝑏
𝑖

for all 𝑖 ∈ 𝑁 (2) ,

𝛿
∗3,𝑎
𝑖

and 𝛿
∗3,𝑏
𝑖

for all 𝑖 ∈ 𝑁 (3) , so that they add up to

𝑡∗ = 𝑢1 (𝑏) − 𝑢1 (𝑎) −
𝛾

1 − 𝛾
(sw(𝑎,𝑈 ) − sw(𝑏,𝑈 ))/𝑛 (10)

Note that this value falls in the permitted range as it is clearly at most 𝑢1 (𝑏) − 𝑢1 (𝑎), and it is at

least 0 by a simple rearrangement of the known inequality 𝑣𝑖 (𝑏, 𝜸̃ ,𝑈 ) ≥ 𝑣𝑖 (𝑎, 𝜸̃ ,𝑈 ).

Construction of 𝑈̃ .

• For all 𝑖 ∉ 𝑁 ′ ∪ {1}, set 𝑖’s utilities in 𝑈̃ as in𝑈 , i.e., 𝑢̃𝑖 (𝑎) = 𝑢𝑖 (𝑎) and likewise for 𝑏 and 𝑐 .

• For all 𝑖 ∈ 𝑁 ′
set 𝑢̃𝑖 (𝑐) = 𝑢𝑖 (𝑐), and
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– for 𝑖 ∈ 𝑁 ′
(1) , set

𝑢̃𝑖 (𝑎) = 𝑢𝑖 (𝑎) − 𝛿
∗1,𝑎
𝑖

,

𝑢̃𝑖 (𝑏) = 𝑢𝑖 (𝑏)

– for 𝑖 ∈ 𝑁 ′
(2) , set

𝑢̃𝑖 (𝑎) = 𝑢𝑖 (𝑎)

𝑢̃𝑖 (𝑏) = 𝑢𝑖 (𝑏) + 𝛿
∗2,𝑏
𝑖

– for 𝑖 ∈ 𝑁 ′
(3) , set

𝑢̃𝑖 (𝑎) = 𝑢𝑖 (𝑎) − 𝛿
∗3,𝑎
𝑖

𝑢̃𝑖 (𝑏) = 𝑢𝑖 (𝑏) + 𝛿
∗3,𝑏
𝑖

.

• For voter 1, set 𝑢̃1 (𝑐) = 𝑢1 (𝑐), and set

𝑢̃1 (𝑎) = 𝑢1 (𝑎) +
∑

𝑖∈𝑁 ′
(1)

𝛿
∗1,𝑎
𝑖

+
∑

𝑖∈𝑁 ′
(3)

𝛿
∗3,𝑎
𝑖

𝑢̃1 (𝑏) = 𝑢1 (𝑏) −
∑

𝑖∈𝑁 ′
(2)

𝛿
∗2,𝑏
𝑖

−
∑

𝑖∈𝑁 ′
(3)

𝛿
∗3,𝑏
𝑖

.

By construction, all utilities are nonnegative.

𝑈̃ satisfies Property 3. We want to show that sw(𝑎, 𝑈̃ ) = sw(𝑎,𝑈 ), and likewise for alternatives 𝑏

and 𝑐. This is true for 𝑐 by inspection, as for all 𝑖 ∈ [𝑛], 𝑢̃𝑖 (𝑐) = 𝑢𝑖 (𝑐). For 𝑎 and 𝑏, the argument

is also by inspection, noting that the utility added or subtracted among the 𝑁 ′
group for either

alternative is exactly compensated by the change to voter 1’s utility for that alternative.

𝑈̃ satisfies Property 1. We need to conclude that by our construction, all voters’ other than 1’s

rankings were preserved, i.e., 𝜋
𝜸̃ ,𝑈
𝑖

= 𝜋
𝜸̃ ,𝑈̃
𝑖

for all 𝑖 ≠ 1. We will confirm this by group:

• For all 𝑖 ∉ 𝑁 ′ ∪ {1}, this holds simply by the fact that 𝑈̃ satisfies Property 3, 𝛾𝑖 = 𝛾𝑖 , and

𝑢̃𝑖 (𝑎) = 𝑢𝑖 (𝑎), 𝑢̃𝑖 (𝑏) = 𝑢𝑖 (𝑏), and 𝑢̃𝑖 (𝑐) = 𝑢𝑖 (𝑐).

• For all 𝑖 ∈ 𝑁 ′
, this follows from claims 1, 2, and 3 and the fact that we set the 𝛿s as specified

according to the conditions of those claims.

𝑈̃ satisfies Property 2. This is implied by the fact that 𝑣1 (𝑎, 𝜸̃ , 𝑈̃ ) = 𝑣1 (𝑏, 𝜸̃ , 𝑈̃ ), which we will prove

now. First, we will the following equality using (10):

𝑢̃1 (𝑏) − 𝑢̃1 (𝑎) = 𝑢1 (𝑏) − 𝑢1 (𝑎) − 𝑡∗ =
𝛾

1 − 𝛾
(sw(𝑎,𝑈 ) − sw(𝑏,𝑈 ))/𝑛.

Then, applying this equality,

𝑣1 (𝑏, 𝜸̃ , 𝑈̃ ) − 𝑣1 (𝑎, 𝜸̃ , 𝑈̃ ) = (1 − 𝛾1) (𝑢̃1 (𝑏) − 𝑢̃1 (𝑎)) + 𝛾1 (sw(𝑏),𝑈 ) − sw(𝑎,𝑈 ))/𝑛

= (1 − 𝛾1) ·
𝛾1

1 − 𝛾1

(sw(𝑎,𝑈 ) − sw(𝑏,𝑈 )/𝑛 + 𝛾1 (sw(𝑏),𝑈 ) − sw(𝑎,𝑈 ))/𝑛

= 0. □
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B.2 Proof of Proposition 4.6
Proposition 4.6. Copeland is nonuniform PS-monotonic.

Proof. Let 𝑓 = Copeland. Since the case𝑚 ≤ 3 is covered by Proposition 4.5, we may assume

here that𝑚 ≥ 4. For notational convenience, for any instance (𝜸 ,𝑈 ) we will write 𝝅𝜸 ,𝑈
to denote a

profile compatible with (𝜸 ,𝑈 ).

It suffices to show that when a single voter’s public spirit level is decreased, the worst-case distortion

weakly increases. Suppose this voter is voter 1, and that their public spirit is decreased from 𝛾1 to

𝛾1, corresponding to a change from PS-vector𝜸 to 𝜸̃ (all else kept the same). To prove monotonicity,

it suffices to prove that for an arbitrary utility matrix𝑈 , we can find a utility matrix 𝑈̃ such that

the winner 𝑎′ remains the same (i.e., 𝑎′ = Copeland(𝝅𝜸 ,𝑈 ) = Copeland(𝝅𝜸̃ ,𝑈̃ )), and such that

sw(𝑎′,𝑈 ) = sw(𝑎′, 𝑈̃ ), sw(𝑎∗,𝑈 ) = sw(𝑎∗, 𝑈̃ ). We make a case distinction now on whether 𝑎′

pairwise-dominates 𝑎∗ in 𝝅𝜸 ,𝑈
.

Case 1: If 𝑎′ strictly pairwise-dominates 𝑎∗ in 𝝅𝜸 ,𝑈
, then define 𝑈̃ such that for all 𝑖 ∈ [𝑛],

• 𝑢̃𝑖 (𝑎) = 0 for all 𝑎 ∉ {𝑎′, 𝑎∗}

• 𝑢̃𝑖 (𝑎) = 𝑢𝑖 (𝑎) for all 𝑎 ∈ {𝑎′, 𝑎∗}

Now, we argue that dist(Copeland,𝜸 ,𝑈 ) = dist(Copeland, 𝜸̃ , 𝑈̃ ):

Observation 1. Thewelfares of𝑎′, 𝑎∗ are preserved across𝑈 , 𝑈̃ , i.e., sw(𝑎′,𝑈 ) = sw(𝑎′, 𝑈̃ ), sw(𝑎∗,𝑈 ) =
sw(𝑎∗, 𝑈̃ ).

Observation 2. for all voters 𝑖 ≠ 1, 𝑖 has the same relative ordering of 𝑎′,𝑎∗ in 𝝅𝜸 ,𝑈
and 𝝅𝜸̃ ,𝑈̃

. This is

because from 𝜸 ,𝑈 to 𝜸̃ , 𝑈̃ , 𝑎′, 𝑎∗’s average utilities don’t change, 𝑖’s utilities for 𝑎′, 𝑎∗ don’t change,
and 𝛾𝑖 doesn’t change, meaning that 𝑣𝑖 (𝑎′,𝜸 ,𝑈 ) = 𝑣𝑖 (𝑎′, 𝜸̃ , 𝑈̃ ) and 𝑣𝑖 (𝑎∗,𝜸 ,𝑈 ) = 𝑣𝑖 (𝑎∗, 𝜸̃ , 𝑈̃ ).

Observation 3. In 𝝅𝜸̃ ,𝑈̃
, 𝑎′ and 𝑎∗ pairwise-dominate all 𝑎 ∉ {𝑎′, 𝑎∗}. This is because all voters must

rank 𝑎′, 𝑎∗ in the first two positions and all the other alternatives in positions 3 . . .𝑚, by virtue of

the fact that we can wlog assume that some voter has nonzero utility for 𝑎∗ (else the distortion will

be 0), and thus some voter has nonzero utility for 𝑎′ (since it is sometimes ranked ahead of 𝑎′). In
contrast, all other alternatives have average utility 0, and thus must be ranked behind 𝑎′, 𝑎∗.

Observation 4. 𝑎′ pairwise-dominates 𝑎∗ in 𝝅𝜸̃ ,𝑈̃
. If 𝑎∗ ≻

𝜋
𝜸 ,𝑈
1

𝑎′, then either voter 1’s ranking is

preserved, or 𝑎′ ≻
𝜋
𝜸̃ ,𝑈̃
𝑖

𝑎∗, which can only strengthen 𝑎′’s pairwise domination of 𝑎∗. Conversely, if

𝑎′ ≻𝝅𝜸 ,𝑈 𝑎∗, 𝑎∗ cannot overtake 𝑎′ by Lemma B.1.

These four observations, taken together, imply that in 𝝅𝑈̃ ,𝜸̃
, 𝑎′ still pairwise-dominates 𝑎∗, and

moreover, both 𝑎′ and 𝑎∗ pairwise-dominate everything else. We conclude that the uncovered set is

{𝑎′}, and thus 𝑎′ is the unique winner. By Observation 1, this directly implies that the distortion is

preserved across (𝜸 ,𝑈 ) and (𝜸̃ , 𝑈̃ ).

Case 2: Now, suppose 𝑎′ does not strictly dominate 𝑎∗. We may without loss of generality as-

sume that 𝑎∗ is not a Copeland winner— indeed, if it were, then for this 𝑈 we would have

dist(Copeland,𝜸 ,𝑈 ) = 1, in which case the distortion can only increase when voter 1’s PS-level is

dropped.
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When 𝑎∗ is not a Copeland winner, it has a strictly lower Copeland score than 𝑎′, and thus there

must exist some alternative 𝑏 such that 𝑎′ strictly pairwise-dominates 𝑏 and 𝑏 weakly pairwise

dominates 𝑎∗. We now construct 𝑈̃ from 𝑈 in three steps. In the first step, for all alternatives

𝑎 ∉ {𝑎′, 𝑎∗, 𝑏} and all voters 𝑖 ∈ [𝑛], we set 𝑢̃𝑖 (𝑎) = 0. For all voters 𝑖 ≠ 1, we set their utilities in 𝑈̃

for 𝑎′, 𝑎∗, 𝑏 to be the same as in𝑈 .

In the second step, we set the utilities for 𝑎∗, 𝑎′, 𝑏 for voter 𝑖 = 1, depending on the following case

distinction.

• Suppose sw(𝑏,𝑈 ) > sw(𝑎′,𝑈 ).

– In this case, the social welfares are ordered sw(𝑎∗,𝑈 ) ≥ sw(𝑏,𝑈 ) > sw(𝑎′,𝑈 ), while the

above pairwise wins are

𝑎′
strictly

−−−−−→ 𝑏
weakly

−−−−−→ 𝑎∗ .

Since dropping 𝛾1 can only promote lower-welfare alternatives, we keep the same utilities for

voter 1, and these pairwise wins will continue to hold.

– Now, suppose sw(𝑏,𝑈 ) ≤ sw(𝑎′,𝑈 ).

∗ In this case, we know that dropping 𝛾1 can lead to the following promotions in 1’s ranking: 𝑏

over 𝑎′, 𝑏 over 𝑎∗, or 𝑎′ over 𝑎∗. The last one doesn’t concern us, as the promotion of 𝑎′ only
helps 𝑎′ win, and the second-last one does not concern us because it will just strengthen

the existing pairwise win of 𝑏 versus 𝑎∗. Thus, as long as the first promotion doesn’t occur,

we keep the same utilities as before.

∗ If 𝑏 is promoted over 𝑎′, we drop its utility to 𝑢̃1 (𝑏) = 0 for voter 1 (then, it will not be

promoted, leaving only the option of promoting 𝑎′ over 𝑎∗). Then, if there exists someone

who ranks 𝑏 ahead of 𝑎′, we add this utility to someone who ranks 𝑏 ahead of 𝑎′. If the
person ranks 𝑏 ahead of 𝑎∗, this preserves their exact ranking; if they rank 𝑏 behind 𝑎∗,
this may result in a strengthening of the pairwise defeat of 𝑎∗ by 𝑏, which does not change

the Copeland winner. Else, if there is no one who ranks 𝑏 ahead of 𝑎′, then 𝑏 dominating

𝑎′ pairwise is not possible by changing any single person’s ranking, so add this utility

arbitrarily.

Finally, in the third step, we add identical copies of the ‘intermediate’ alternative 𝑏, to make 𝑎′ the
unique Copeland winner. Again, we need a case distinction.

• 𝑛 is even. We take an ‘empty’ alternative
¯𝑏 ∈ [𝑚] \ {𝑎′, 𝑎∗, 𝑏} for which we previously set the

utilities to 0, and re-set its utilities to be identical to𝑏. We moreover choose the preference profile

where any individual’s preference between 𝑎′, 𝑎∗, ¯𝑏 is identical to the preference between 𝑎′, 𝑎∗, ¯𝑏

(i.e. 𝑏, ¯𝑏 are always neighbouring in any 𝜋𝑖 ), and that 𝑏, ¯𝑏 are in a tie (i.e. |{𝑖 : 𝑏 ≻ 𝑏 ′}| = 𝑛/2). In

this constellation, 𝑎′ at least pairwise beats 𝑏 and
¯𝑏 (≥ 2 points), 𝑏 and

¯𝑏 at best pairwise beat

𝑎∗ (≤ 1 point), and 𝑎∗ at best beats 𝑎′ (≤ 1 point), so 𝑎′ is the winner.

• 𝑛 is odd and𝑚 ≥ 5. Since we are unable to create pairwise ties when 𝑛 is odd, we have to

treat this case separately. Let us assume first that𝑚 ≥ 5. Then, we have at least two ‘empty’

alternatives for which we previously set the utilities to 0; let us call these
¯𝑏, ˜𝑏 ∈ [𝑚] \ {𝑎′, 𝑎∗, 𝑏}.

We then re-set the utilities for
¯𝑏, ˜𝑏 to be identical to 𝑏, such that they are ranked relative to 𝑎′, 𝑎∗

the same as 𝑏 by any individual. We moreover order 𝑏, ¯𝑏, ˜𝑏 in so that they form a Condorcet

cycle, and

𝑏
strictly

−−−−−→ ¯𝑏
strictly

−−−−−→ ˜𝑏
strictly

−−−−−→ 𝑏.
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Note that we may do so freely, since all three alternatives are identical.

In this scenario, the Copeland scores are

– 𝑎′ gets 3 points (for beating 𝑏, ¯𝑏, ˜𝑏),

– 𝑎∗ gets 1 point (for beating 𝑎′),

– 𝑏, ¯𝑏, ˜𝑏 get 2 points,

whence 𝑎′ wins.

• 𝑛 is odd and𝑚 = 4. The previous arguments held for the Copeland rule with arbitrary tie-

breaking between alternatives with identical Copeland score. In the specific case of 𝑛 being

odd and𝑚 = 4, we need to make a slight refinement to our definition of distortion, namely that

the distortion is a supremum over the whole Copeland set𝐶𝑆 (𝝅𝜸 ,𝑈 ) for any (𝜸 ,𝑈 )-compatible

profile 𝝅𝜸 ,𝑈
.

dist(Copeland,𝜸 ,𝑈 ) = sup

𝑎∈𝐶𝑆 (𝝅𝜸 ,𝑈 )

sw(𝑎∗,𝑈 )
sw(𝑎,𝑈 ) .

It then suffices to ensure that 𝑎′ is one of the Copeland winners under (𝑈̃ , 𝛾), not the unique
one. Let the four alternatives be called 𝑎′, 𝑎∗, 𝑏, ¯𝑏. Since (i) 𝑛 is odd, (ii) we assumed that 𝑎′ does
not strictly pairwise dominate 𝑎∗ and since we assumed that 𝑎∗ is not a Copeland winner, we

can deduce that

– 𝑎′ has exactly Copeland score 2 (for beating 𝑏, ¯𝑏.)

– 𝑎∗ has exactly Copeland score 1 (for beating 𝑎′.)

– There exist exactly two elements in the Copeland set (alternatives with score 2), suppose

that 𝑏 is this element.

– Note that this 𝑏 is an admissible choice in the second step, We assume that it was chosen in

the second step.

After the second step, we may here create a
¯𝑏 identical to 𝑏, and suppose that 𝑏 pairwise beats

¯𝑏. Then the Copeland set will again consist of the same alternatives {𝑎′, 𝑏}. Since the welfare
of 𝑏 was preserved in the second step, the proof is now complete. □

B.3 Proof of Proposition 4.7
Proposition 4.7. Plurality is nonuniform PS-monotonic.

Proof. For notational convenience, for any instance (𝜸 ,𝑈 ) we will write 𝝅𝜸 ,𝑈
to denote any profile

compatible with (𝜸 ,𝑈 ).

It suffices to prove that when a single voter’s public spirit level is decreased, the worst-case distortion

increases. Suppose this voter is voter 𝑖 = 1, and that 𝛾1 is changed from some value 𝛾1 = 𝜌 (Scenario

1) is changed to some lower value 𝛾1 = 𝜌 < 𝜌 (Scenario 2). Let us denote by𝜸 the original PS-vector

(with 𝛾1 = 𝜌), and by 𝜸̃ the one which arises from lowering 𝛾1 to 𝜌 . To prove monotonicity, it

suffices to prove that for any utility matrix𝑈 ∈ R𝑛×𝑚 , we can find a utility matrix 𝑈̃ such that

(1) the winner remains the same, 𝑎′ = 𝑓 (𝝅𝜸 ,𝑈 ) = 𝑓 (𝝅𝜸̃ ,𝑈̃ ),
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(2) the social welfares of 𝑎′, 𝑎∗ are preserved, i.e.

sw(𝑎′,𝑈 ) = sw(𝑎′, 𝑈̃ ), sw(𝑎∗,𝑈 ) = sw(𝑎∗, 𝑈̃ ).

If voter 1’s first-ranked alternative remains unchanged, there is nothing to prove, so let us assume

the first-ranked alternative does change – let us denote by 𝜋
𝜸 ,𝑈
1

(1) = 𝑎 the alternatives which

receive voter 1’s vote in scenario 1 such that voter 1’s rankings are of the form

• Scenario 1: 𝑎 ≻ all other alternatives,

• Scenario 2: alternatives 𝐴1 ≻ 𝑎 ≻ alternatives 𝐴2.

Since the second ranking arises from the first ranking by lowering 𝛾 , only alternatives with lower

welfare can be promoted over 𝑎, i.e. 𝐴1 consists of alternatives with welfare below sw(𝑎,𝑈 ).

We construct 𝑈̃ from𝑈 in two steps. First, we set voter 1’s utility for all alternatives in 𝐴1 to zero.

Since all those alternatives have lower welfare than 𝑎, this will restore 𝑎 as voter 1’s first-ranked

alternative. Since the highest-welfare alternative 𝑎∗ cannot have not been promoted over 𝑎, i.e.

𝑎∗ ∈ 𝐴2, its welfare remains unchanged.

This second step is to restore some of the welfares of alternatives in 𝐴1 which were affected by the

previous step. Specifically, let 𝑎 ∈ 𝐴1. If there is a non-empty set 𝑁𝑎 ⊆ [𝑛], |𝑁𝑎 | ≥ 1 of voters (in

Scenario 1) who rank 𝑎 first, we add an 𝑢1 (𝑎)/|𝑁 𝑗 | amount of utility to all the voters in 𝑁𝑎 ,

𝑢̃𝑖 (𝑎) = 𝑢𝑖 (𝑎) +
𝑢1 (𝑎)
|𝑁𝑎 |

, ∀𝑖 ∈ 𝑁𝑎 .

If on the other hand 𝑎 is ranked first by no voter, we do not intervene.

We claim that these two steps combined restore the first-ranked alternatives of all voters, and thus

the winner of the election. To see this, we notice the following.

• Welfares. For any 𝑎 ∈ 𝐴1 with 𝑁𝑎 ≠ ∅, sw(𝑎,𝑈 ) = sw(𝑎, 𝑈̃ ). The other alternatives 𝑎 ∈ 𝐴1

with 𝑁𝑎 = ∅ may have lower welfare sw(𝑎, 𝑈̃ ) ≤ sw(𝑎,𝑈 ). The welfares of alternatives in 𝐴2,

in particular of 𝑎∗ ∈ 𝐴2, remain unchanged.

• Voters with first-choice in 𝐴1. If a voter first-ranks some alternative 𝑎 ∈ 𝐴̃1 in Scenario 1

(𝜸 ,𝑈 ), then they still do so in Scenario 2 (𝜸̃ , 𝑈̃ ), since they have added utility for 𝑎 while the

welfares of all other alternatives are either the same or lower.

• Voters with first-choice in {𝑎} ∪ 𝐴2. Suppose a voter first-ranks some 𝑎 ∈ {𝑎} ∪ 𝐴2 under

(𝜸 ,𝑈 ). Then, since both their utility and welfare for 𝑎 are the same under (𝜸̃ , 𝑈̃ ) while the
welfares of other alternatives can only have decreased, they continue to first-rank 𝑎 under

(𝜸̃ ,𝑈 ).

This concludes the proof. □

B.4 Proof of Lemma 4.13
Lemma 4.13. If 𝑓 is weakly unanimous and instance-wise PS-monotonic, then it is monotonic.

Proof. Suppose that 𝑓 is weakly unanimous but not monotonic; we will show that it is not instance-

wise PS-monotonic. Fix a pair of profiles 𝝅 , 𝝅 ′
in which monotonicity is violated, i.e., where there

exists some voter 𝑖∗ ∈ [𝑛] such that 𝑎 is promoted via an adjacent swap in 𝜋 ′
𝑖∗ compared to 𝜋𝑖∗ , but

𝑓 (𝝅) = 𝑎 and 𝑓 (𝝅 ′) = 𝑏. Let 𝑎 be the alternative over which 𝑎 is promoted from 𝜋𝑖∗ to 𝜋
′
𝑖∗ .
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Given that 𝑓 (𝝅) = 𝑎 and the fact that 𝑓 is weakly unanimous, for every 𝑐 ≠ 𝑎, there must exist

some voter 𝑖𝑐 such that 𝑎 ≻𝜋𝑖𝑐
𝑐 . Arbitrarily choose one such voter per 𝑐 and denote them 𝑖𝑐 , for all

𝑐 ≠ 𝑎. Note that it is possible that some such 𝑖𝑐 = 𝑖∗; we will handle this in the proof.

Now, we will construct a pair of instances 𝜸 ,𝑈 and 𝜸 ,𝑈 ′
such that 𝜸 ′

differs from 𝜸 only in

that 𝛾 ′
𝑖∗ > 𝛾𝑖∗ , and that three claims hold: Claim (1): dist(𝑓 ,𝜸 ′,𝑈 ) > dist(𝑓 ,𝜸 ,𝑈 ), Claim (2):

𝝅 ∈ Π𝑉 (𝜸 ,𝑈 ) , Claim (3): 𝝅 ′ ∈ Π𝑉 (𝜸 ,𝑈 ′) . Together, these claims constitute a violation of instance-wise

PS-monotonicity.

Construction of 𝜸 , 𝜸 ′
: Let 𝜸 = 0 (i.e., all voters have public spirit level 0). Let 𝜸 ′

be defined such

that 𝛾 ′
𝑖 = 𝛾𝑖 = 0 for all 𝑖 ≠ 𝑖∗, and let 𝛾 ′

𝑖∗ = 𝜖 , where 𝜖 > 0 is set to some number smaller than 1/2𝑚2
.

Construction of𝑈 :

• Group 1: For all voters 𝑖 ≠ 𝑖∗ and 𝑖 ∉ {𝑖𝑐 |𝑐 ∈ [𝑚] \ {𝑎}}, let 𝑖 have 0 utility for all alternatives.

• Group 2: For all voters 𝑖 ≠ 𝑖∗ and 𝑖 ∈ {𝑖𝑐 |𝑐 ∈ [𝑚] \ {𝑎}}, let 𝑖 have utility 1 for 𝑎 and all

alternatives ranked ahead of 𝑎 in 𝜋𝑖 , and 0 for all other alternatives.

• For 𝑖∗: starting at the first-ranked alternative in 𝜋𝑖∗ , assign utilities starting at 1 and let them

descend at intervals of 1/𝑚2
until we reach alternative 𝑎. Then, assign 𝑢𝑖∗ (𝑎) so that 𝑢𝑖∗ (𝑎) −

𝑢𝑖∗ (𝑎) = 𝜖2/𝑛. Now, continuing in order of the 𝜋𝑖∗ after 𝑎, continue assigning alternatives

utilities descending at intervals of 1/𝑚2
.

Proof of Claims (1), (2), and (3):

Claim (1): We prove this by proving that 𝑎 has strictly higher social welfare than any other

alternative. Then, the winner changing from 𝑎 to 𝑏 from 𝝅 to 𝝅 ′
must increase the distortion, i.e.,

dist(𝑓 ,𝜸 ′,𝑈 ) > dist(𝑓 ,𝜸 ,𝑈 ).

First, if there is no 𝑐 such that 𝑖𝑐 = 𝑖∗, then for all 𝑐 ≠ 𝑎, we have that
∑

𝑖∈ Group 1
(𝑢𝑖 (𝑎) −𝑢𝑖 (𝑐)) = 0,∑

𝑖∈ Group 2
(𝑢𝑖 (𝑎) − 𝑢𝑖 (𝑐)) ≥ 1, and 𝑢𝑖∗ (𝑎) − 𝑢𝑖∗ (𝑐) ≥ −1/𝑚. Thus,

∑
𝑖∈[𝑛] (𝑢𝑖 (𝑎) − 𝑢𝑖 (𝑐)) > 0,

equivalent to sw(𝑎,𝑈 ) > sw(𝑐,𝑈 ).

If there exists 𝑐∗ such that 𝑖𝑐∗ = 𝑖∗, then the previous case holds for all 𝑐 ≠ 𝑐∗. For 𝑐∗, we repeat the
above analysis:

∑
𝑖∈ Group 1

(𝑢𝑖 (𝑎) −𝑢𝑖 (𝑐∗)) = 0,

∑
𝑖∈ Group 2

(𝑢𝑖 (𝑎) −𝑢𝑖 (𝑐∗)) ≥ 0, and𝑢𝑖∗ (𝑎) −𝑢𝑖∗ (𝑐∗) ≥
1/𝑚2

, the final inequality by the fact that𝑎 ≻𝜋𝑖∗ 𝑐
∗
. Thus, again

∑
𝑖∈[𝑛] (𝑢𝑖 (𝑎)−𝑢𝑖 (𝑐∗)) > 0, equivalent

to sw(𝑎,𝑈 ) > sw(𝑐∗,𝑈 ).

Claim (2):We have assigned voters’ utilities in weakly decreasing order according to 𝜋𝑖 for all 𝑖 , and

𝜸 = 0, meaning that voters’ individual utilities fully determine their rankings: thus, 𝝅 ∈ Π𝑉 (𝜸 ,𝑈 ) .

Claim (3): The high level proof of this claim is the following: First, for all voters 𝑖 ≠ 𝑖∗, their 𝛾𝑖 = 𝛾 ′
𝑖 ,

so their rankings implied by𝑈𝜸 and 𝜸 ,𝑈 ′
are the same, as is consistent with 𝜋𝑖 = 𝜋 ′

𝑖 . For voter 𝑖
∗
,

the separation between the utilities for all pairs of alternatives other than 𝑎, 𝑎 are too large for an 𝜖

increase in public spirit to flip them; however, the separation between the utilities of 𝑎, 𝑎 are small

enough for this increase to flip them, realizing the transformation from 𝜋𝑖∗ → 𝜋 ′
𝑖∗ .

Building on the notation of 𝝅 ∈ Π𝑉 (𝜸 ,𝑈 ) (meaning that the profile 𝝅 is consistent with the instance

𝑈 , 𝜸 ), we use 𝜋𝑖 ∈ Π𝑉𝑖 (𝜸 ,𝑈 ) to mean a voter 𝑖’s ranking 𝜋𝑖 is consistent with the vector of PS-values

implied by the 𝑖th row of the matrix 𝑉 (𝜸 ,𝑈 ).
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For all voters 𝑖 ≠ 𝑖∗, by construction of 𝝅 , 𝝅 ′
we have that 𝜋𝑖 = 𝜋 ′

𝑖 . Moreover, 𝛾𝑖 = 𝛾 ′
𝑖 implies

that Π𝑉𝑖 (𝜸 ,𝑈 ) = Π𝑉𝑖 (𝜸 ,𝑈 ′) . By these two equalities, 𝜋𝑖 ∈ Π𝑉𝑖 (𝜸 ,𝑈 ) (as shown in Claim (2)) implies

𝜋 ′
𝑖 ∈ Π𝑉𝑖 (𝜸 ,𝑈 ′) .

Now, it only remains to show that 𝜋 ′
𝑖∗ ∈ Π𝑉𝑖∗ (𝜸 ,𝑈 ′) . First, we observe that for all alternatives 𝑐 ,

|𝑣𝑖∗ (𝑐,𝜸 ,𝑈 )−𝑣𝑖∗ (𝑐,𝜸 ′,𝑈 ) | = |𝑢𝑖∗ (𝑐)−(1−𝜖)𝑢𝑖∗ (𝑐)−𝜖sw(𝑐,𝑈 )/𝑛 | = 𝜖 |𝑢𝑖∗ (𝑐)−sw(𝑐,𝑈 )/𝑛 | ≤ 𝜖, (11)

where the final step holds because all utilities in𝑈 are bounded between 0 and 1.

Next, we observe that for all pairs of alternatives (𝑐, 𝑐 ′) ≠ (𝑎, 𝑎), we have that

|𝑣𝑖∗ (𝑐,𝜸 ,𝑈 ) − 𝑣𝑖∗ (𝑐 ′,𝜸 ,𝑈 ) | = |𝑢𝑖∗ (𝑐) − 𝑢𝑖∗ (𝑐) | ≥ 1/𝑚2 > 2𝜖. (12)

Now, fix an arbitrary pair of alternatives (𝑐, 𝑐 ′) ≠ (𝑎, 𝑎) such that 𝑐 ≻𝜋𝑖∗ 𝑐
′
, and thus 𝑣𝑖∗ (𝑐,𝜸 ,𝑈 ) ≥

𝑣𝑖∗ (𝑐 ′,𝜸 ,𝑈 ). Then, by Equations (11) and (12) we have that 𝑣𝑖∗ (𝑐,𝜸 ′,𝑈 ) ≥ 𝑣𝑖∗ (𝑐 ′,𝜸 ′,𝑈 ):

0 < 𝑣𝑖∗ (𝑐,𝜸 ,𝑈 ) − 𝑣𝑖∗ (𝑐 ′,𝜸 ,𝑈 ) − 2𝜖 by (12)

≤ 𝑣𝑖∗ (𝑐,𝜸 ,𝑈 ) − 𝑣𝑖∗ (𝑐 ′,𝜸 ,𝑈 ) − |𝑣𝑖∗ (𝑐,𝜸 ,𝑈 ) − 𝑣𝑖∗ (𝑐,𝜸 ′,𝑈 ) | − |𝑣𝑖∗ (𝑐 ′,𝜸 ′,𝑈 ) − 𝑣𝑖∗ (𝑐 ′,𝜸 ,𝑈 ) | by (11)

≤ 𝑣𝑖∗ (𝑐,𝜸 ,𝑈 ) − 𝑣𝑖∗ (𝑐 ′,𝜸 ,𝑈 ) − (𝑣𝑖∗ (𝑐,𝜸 ,𝑈 ) − 𝑣𝑖∗ (𝑐,𝜸 ′,𝑈 )) − (𝑣𝑖∗ (𝑐 ′,𝜸 ′,𝑈 ) − 𝑣𝑖∗ (𝑐 ′,𝜸 ,𝑈 ))
= 𝑣𝑖∗ (𝑐,𝜸 ′,𝑈 ) − 𝑣𝑖∗ (𝑐 ′,𝜸 ′,𝑈 )

We conclude that for all such pairs (𝑐, 𝑐 ′),

𝑣𝑖∗ (𝑐,𝜸 ,𝑈 ) ≥ 𝑣𝑖∗ (𝑐 ′,𝜸 ,𝑈 ) =⇒ 𝑣𝑖∗ (𝑐,𝜸 ′,𝑈 ) ≥ 𝑣𝑖∗ (𝑐 ′,𝜸 ′,𝑈 ). (13)

Next, we consider the remaining pair (𝑎, 𝑎). First, we observe that

sw(𝑎,𝑈 ) − sw(𝑎,𝑈 ) > 𝜖,

by the fact that

∑
𝑖∈Group 1

(𝑢𝑖 (𝑎) − 𝑢𝑖 (𝑎)) = 0,

∑
𝑖∈Group 2

(𝑢𝑖 (𝑎) − 𝑢𝑖 (𝑎)) ≥ 1 (note that it cannot

be that, given the existence of a 𝑐∗ : 𝑖𝑐∗ = 𝑖∗, 𝑐∗ = 𝑎, because we know that 𝑎 ≻𝜋𝑖∗ 𝑎), and

𝑢𝑖∗ (𝑎) −𝑢𝑖∗ (𝑎) = −𝜖2/𝑛. Adding up over voters, these inequalities imply that sw(𝑎,𝑈 ) − sw(𝑎,𝑈 ) ≥
1 − 𝜖2/𝑛 > 𝜖 .

Then, we show the the inequality

𝑣𝑖∗ (𝑎,𝜸 ′,𝑈 ) > 𝑣𝑖∗ (𝑎,𝜸 ′,𝑈 ) (14)

via the following deduction, where the first inequality uses that 𝑢𝑖∗ (𝑎) − 𝑢𝑖∗ (𝑎) = −𝜖2/𝑛 < 0, and

the second inequality uses that sw(𝑎,𝑈 ) − sw(𝑎,𝑈 ) ≥ 𝜖 :

𝑣𝑖∗ (𝑎,𝜸 ′,𝑈 ) − 𝑣𝑖∗ (𝑎,𝜸 ′,𝑈 ) = (1 − 𝜖) (𝑢𝑖∗ (𝑎) − 𝑢𝑖∗ (𝑎)) + 𝜖 (sw(𝑎,𝑈 )/𝑛 − sw(𝑎,𝑈 )/𝑛)
> −𝜖2/𝑛 + 𝜖 (sw(𝑎,𝑈 ) − sw(𝑎,𝑈 ))/𝑛
≥ −𝜖2/𝑛 + 𝜖 · 𝜖/𝑛
= 0.

By Equations (13) and (14), we have that any ranking 𝜋 with the following two properties must be

consistent with Π𝑉𝑖∗ (𝜸 ,𝑈 ′) : First, for all pairs of alternatives (𝑐, 𝑐 ′) ≠ (𝑎, 𝑎), 𝑐 ≻𝜋𝑖∗ 𝑐
′ =⇒ 𝑐 ≻𝜋 𝑐 ′,

and second, 𝑎 ≻𝜋 𝑎. 𝜋 ′
𝑖∗ satisfies these criteria by construction, and thus 𝜋 ′

𝑖∗ ∈ Π𝑉𝑖∗ (𝜸 ,𝑈 ′) , as needed,
concluding the proof. □



Bailey Flanigan, Ariel D. Procaccia, and Sven Wang 44

B.5 Proof of Lemma 4.15
Lemma 4.15. If 𝑓 weakly unanimous and monotonic, then if 𝑓 is instance-wise PS-monotonic, it

must also be swap-invariant.

Proof. We will prove the contrapositive. Suppose 𝑓 is not swap-invariant. Then, there exists

two profiles 𝝅 , 𝝅 ′
that differ only in that for some voter 𝑖∗, 𝑏 and 𝑐 are adjacently swapped in

their ranking, and 𝑓 (𝝅) = 𝑎 but 𝑓 (𝝅 ′) = 𝑏. By the monotonicity of 𝑓 , we know that 𝑐 ≻𝜋𝑖∗ 𝑏:

otherwise, going from 𝝅 ′ → 𝝅 , 𝑏 would be promoted over 𝑐 but lose the winning spot, violating

monotonicity. Now, we will break into cases depending on the nature of 𝝅 , and in either case, show

that PS-monotonicity is violated.

Case 1: 𝝅 contains at least one voter 𝑖 who ranks 𝑏 ≻𝜋𝑖 𝑐 .

Now,wewill construct𝜸 ,𝑈 ,𝜸 ′
such that the following claims hold:Claim (1): sw(𝑎,𝑈 ) > sw(𝑏,𝑈 ) >

sw(𝑐,𝑈 ); Claim (2): 𝝅 ∈ Π𝑉 (𝜸 ,𝑈 ) ; and Claim (3): 𝝅 ′ ∈ Π𝑉 (𝜸 ,𝑈 ′) . If these claims are true, then by the

construction of our example, we have found 𝜸 ≤ 𝜸 ′
such that by increasing the public spirit from

𝜸 to 𝜸 ′
, we can change the winner from 𝑎 to 𝑏, thereby increasing the distortion, a violation of

instance-wise PS-monotonicity.

Construction of 𝜸 ,𝜸 ′
. Let 𝜸 = 0,𝜸 ′

such that 𝛾 ′
𝑖 = 𝛾𝑖 = 0 for all 𝑖 ≠ 𝑖∗, and 𝛾 ′

𝑖∗ = 𝜖 for some small

𝜖 > 0 where 𝜖 < 1/(16𝑚).

Construction of𝑈 .We set the utilities according to three cases (where latter cases apply only if

earlier cases do not hold):

A. If there exists an 𝑖 who ranks 𝑎 ≻𝜋𝑖 𝑏 ≻𝜋𝑖 𝑐 , set 𝑖’s utilities in weakly decreasing order of 𝜋𝑖
such that 𝑎 (and everything before it) gets utility 1, 𝑏 (and everything after 𝑎 and before 𝑏) gets

utility 1/2, and 𝑐 (and everything after) gets utility 0.

Give all remaining voters besides 𝑖∗ utility 0 for all alternatives.

B. Else if there exists an 𝑖 where 𝑏 ≻𝜋𝑖 𝑎 ≻𝜋𝑖 𝑐 , set 𝑖’s utilities in weakly decreasing order of 𝜋𝑖 :

give 𝑎 and everything ranked before it (including 𝑏) utility 1, and everything after 𝑎 (including

𝑐) 0 utility.

Then, by weak unanimity of 𝑓 , there must be another voter 𝑖 ′ where 𝑎 ≻𝜋𝑖′ 𝑏, whose utilities

we assign based on two cases:

B1. If 𝑖 ′ ≠ 𝑖∗, set 𝑖 ′’s utilities according to 𝜋𝑖′ : give all alternatives ranked ahead of 𝑏 utility 1/2

(this must include 𝑎 and 𝑐), and utility 0 to 𝑏 and all alternatives ranked after.

B2. If 𝑖 ′ = 𝑖∗, note that 𝑖 ′ must have ranking 𝑎 ≻𝜋𝑖′ 𝑐 ≻𝜋𝑖′ 𝑏, because 𝑐 and 𝑏 must be ranked

adjacently. Then, give utility 1 to 𝑎, 1/2 to 𝑐 , 1/2−𝜖2/𝑛 to 𝑏, and set the rest of the alternatives’

utilities so they are decreasing at intervals of at least 1/(4𝑚).

Give all other voters except 𝑖∗ with thus far unset utilities 0 utility for all alternatives.

C. Else, by the falseness of cases A and B and our assumption that there is some 𝑖 for which 𝑏 ≻𝜋𝑖 𝑐 ,

there must exist some voter 𝑖 who ranks 𝑏 ≻𝜋𝑖 𝑐 ≻𝜋𝑖 𝑎. Set 𝑖’s utilities in weakly decreasing

order of 𝜋𝑖 : Give 𝑏 and all alternatives before it utility 1/2 + 𝜖2/𝑛 (the +𝜖2/𝑛 is for convenience

of arguments later), and all alternatives after it (including 𝑐 and 𝑎) utility 0.
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Then, by the weak unanimity of 𝑓 , there must exist one voter 𝑖 ′ where 𝑎 ≻𝜋𝑖′ 𝑏 and 𝑎 ≻𝜋𝑖′ 𝑐 , in

which case, by the falseness of cases A and B they must have ranking 𝑎 ≻𝜋𝑖′ 𝑐 ≻𝜋𝑖′ 𝑏.
10
Set 𝑖 ′’s

utilities in weakly decreasing order of 𝜋 ′
𝑖 , based on two cases:

C1. If 𝑖 ′ ≠ 𝑖∗: let 𝑖 ′ have utility 1 + 𝜖2/𝑛 for 𝑎 (the +𝜖2/𝑛 is for convenience of arguments later)

and all alternatives ranked before it and utility 0 for all alternatives ranked after it (including

𝑐 and 𝑏).

C2. If 𝑖 ′ = 𝑖∗, set 𝑖 ′’s utilities similar to how we did in B2: give utility 3/2 to 𝑎, 1/2 to 𝑐 , 1/2 − 𝜖2/𝑛
to 𝑏, and set the rest of the alternatives’ utilities so they are decreasing at intervals of at least

1/(4𝑚).

Give all other voters with unset utilities except 𝑖∗ 0 utility for all alternatives.

If we have not already set 𝑖∗’s utilities in cases B or C (we cannot set them in case A), set 𝑖∗’s utilities
in weakly decreasing order of 𝜋𝑖∗ : give the alternatives ahead of (and including) 𝑐 utilities starting

at 1/4 and dropping by additive gaps of 1/(4𝑚). Then, set 𝑢𝑖∗ (𝑏) such that 𝑢𝑖∗ (𝑐) − 𝑢𝑖∗ (𝑏) = 𝜖2/𝑛.
Then, for alternatives ranked after 𝑏, continue assigning utilities decreasing by additive gaps of

1/(4𝑚).

Proofs of Claims (1), (2), and (3).

Claim (1): Let 𝑁𝐴 = [𝑛] \ {𝑖}, 𝑁𝐵1 = [𝑛] \ {𝑖} 𝑁𝐵2 = [𝑛], 𝑁𝐶1 = [𝑛] \ {𝑖}, 𝑁𝐶2 = [𝑛], denote the sets
of voters whose utilities are set within cases 𝐴, 𝐵 and 𝐶 , depending on which cases are invoked.

Now, we will show that for any 𝑁 ∈ {𝑁𝐴, 𝑁𝐵1, 𝑁𝐵2, 𝑁𝐶1, 𝑁𝐶2}, we have that∑
𝑖∈𝑁

𝑢𝑖 (𝑎) >
∑
𝑖∈𝑁

𝑢𝑖 (𝑏) >
∑
𝑖∈𝑁

𝑢𝑖 (𝑐),

and moreover, that these inequalities hold by a margin of at least 1/2.

(Case A): letting 𝑁 = 𝑁𝐴, we have
∑

𝑖∈𝑁 𝑢𝑖 (𝑎) = 1,

∑
𝑖∈𝑁 𝑢𝑖 (𝑏) = 1/2,

∑
𝑖∈𝑁 𝑢𝑖 (𝑐) = 0.

(Case B1): letting 𝑁 = 𝑁𝐵1, we have

∑
𝑖∈𝑁 𝑢𝑖 (𝑎) = 3/2,

∑
𝑖∈𝑁 𝑢𝑖 (𝑏) = 1,

∑
𝑖∈𝑁 𝑢𝑖 (𝑐) = 1/2.

(Case B2): letting 𝑁 = 𝑁𝐵2, we have

∑
𝑖∈𝑁 𝑢𝑖 (𝑎) = 2,

∑
𝑖∈𝑁 𝑢𝑖 (𝑏) = 3/2 − 𝜖2/𝑛, ∑𝑖∈𝑁 𝑢𝑖 (𝑐) = 1/2.

(Case C1): letting 𝑁 = 𝑁𝐶1, we have

∑
𝑖∈𝑁 𝑢𝑖 (𝑎) = 1+𝜖2/𝑛,∑𝑖∈𝑁 𝑢𝑖 (𝑏) = 1/2+𝜖2/𝑛,∑𝑖∈𝑁 𝑢𝑖 (𝑐) = 0.

(Case C2): letting 𝑁 = 𝑁𝐶 , we have
∑

𝑖∈𝑁 𝑢𝑖 (𝑎) = 3/2,

∑
𝑖∈𝑁 𝑢𝑖 (𝑏) = 1,

∑
𝑖∈𝑁 𝑢𝑖 (𝑐) = 1/2.

If cases B2 or C2 was the binding case— that is, we set 𝑖∗ while within the three cases— , then we

have already concluded the claim, and sw(𝑎,𝑈 ) − sw(𝑏,𝑈 ) ≥ 1/2 and sw(𝑏,𝑈 ) − sw(𝑐,𝑈 ) ≥ 1/2.

Otherwise, we note that for any pair of alternatives𝑑, 𝑒 , |𝑢𝑖∗ (𝑑)−𝑢𝑖∗ (𝑒) | ≤ 1/4; therefore, these social

welfare gaps cannot be closed by more than 1/4, and we conclude that sw(𝑎,𝑈 ) − sw(𝑏,𝑈 ) ≥ 1/4

and sw(𝑏,𝑈 ) − sw(𝑐,𝑈 ) ≥ 1/4. We will use this lower bound on these gaps later, in Claim (3).

Claim (2):We have assigned voters’ utilities in weakly decreasing order according to 𝜋𝑖 for all 𝑖 , and

𝜸 = 0, meaning that voters’ individual utilities fully determine their rankings: thus, 𝝅 ∈ Π𝑉 (𝜸 ,𝑈 ) .

Claim (3): The proof of this claim follows the same structure as that of Claim (3) in the proof of

Lemma 4.13, so we will be slightly more brief here, and invoke parts of that argument when useful.

10
The alternative would be that there would have to exist two voters, the first for whom 𝑐 ≻ 𝑎 ≻ 𝑏, and the second for

whom 𝑏 ≻ 𝑎 ≻ 𝑐 , which is not possible by the falseness of case B.
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We again use the notation 𝜋𝑖 ∈ Π𝑉𝑖 (𝜸 ,𝑈 ) to mean a voter 𝑖’s ranking 𝜋𝑖 is consistent with the vector

of PS-values implied by the 𝑖th row of the matrix 𝑉 (𝜸 ,𝑈 ).

First, for all voters 𝑖 ≠ 𝑖∗, by construction of 𝝅 , 𝝅 ′
we have that 𝜋𝑖 = 𝜋 ′

𝑖 . Moreover, 𝛾𝑖 = 𝛾 ′
𝑖 implies

that Π𝑉𝑖 (𝜸 ,𝑈 ) = Π𝑉𝑖 (𝜸 ,𝑈 ′) . By these two equalities, 𝜋𝑖 ∈ Π𝑉𝑖 (𝜸 ,𝑈 ) (as shown in Claim (2)) implies

𝜋 ′
𝑖 ∈ Π𝑉𝑖 (𝜸 ,𝑈 ′) .

Now considering voter 𝑖∗, we want to show that 𝜋 ′
𝑖∗ ∈ Π𝑉𝑖∗ (𝜸 ,𝑈 ′) . To show this, first fix a pair

of alternatives (𝑑, 𝑑 ′) ≠ (𝑏, 𝑐). By the same type of reasoning as in Lemma 4.13, we have that

|𝑣𝑖∗ (𝑑,𝜸 ,𝑈 ) − 𝑣𝑖∗ (𝑑 ′,𝜸 ,𝑈 ) | ≥ 1/(4𝑚) > 4𝜖}, and also that |𝑣𝑖∗ (𝑑,𝜸 ,𝑈 ) − 𝑣𝑖∗ (𝑑,𝜸 ′,𝑈 ) | ≤ 2𝜖 and

|𝑣𝑖∗ (𝑑 ′,𝜸 ,𝑈 ) − 𝑣𝑖∗ (𝑑 ′,𝜸 ′,𝑈 ) | ≤ 2𝜖 , by the fact that all utilities in 𝑈 are bounded between 0 and 2.

Putting these facts together, we get that for all such pairs 𝑑, 𝑑 ′
,

𝑣𝑖∗ (𝑑,𝜸 ,𝑈 ) ≥ 𝑣𝑖∗ (𝑑 ′,𝜸 ,𝑈 ) =⇒ 𝑣𝑖∗ (𝑑,𝜸 ′,𝑈 ) ≥ 𝑣𝑖∗ (𝑑 ′,𝜸 ′,𝑈 ). (15)

Now, finally considering the pair 𝑏, 𝑐 , we have the following, using that sw(𝑐,𝑈 ) − sw(𝑏,𝑈 ) ≥ 1/4,

as shown in the proof of Claim (1):

𝑣𝑖∗ (𝑏,𝜸 ′,𝑈 ) − 𝑣𝑖∗ (𝑐,𝜸 ′,𝑈 ) = (1 − 𝜖) (𝑢𝑖∗ (𝑏) − 𝑢𝑖∗ (𝑐)) + 𝜖 (sw(𝑏,𝑈 )/𝑛 − sw(𝑐,𝑈 )/𝑛)
> −𝜖2/𝑛 + 𝜖 (sw(𝑏,𝑈 ) − sw(𝑏,𝑈 ))/𝑛
≥ −𝜖2/𝑛 + 𝜖/(4𝑛)
≥ 0.

We conclude that

𝑣𝑖∗ (𝑏,𝜸 ′,𝑈 ) − 𝑣𝑖∗ (𝑐,𝜸 ′,𝑈 ) > 0. (16)

By Equations (15) and (16), we have that any ranking 𝜋 with the following two properties must be

consistent with Π𝑉𝑖∗ (𝜸 ,𝑈 ′) : First, for all pairs of alternatives (𝑑,𝑑 ′) ≠ (𝑏, 𝑐), 𝑑 ≻𝜋𝑖∗ 𝑑
′ =⇒ 𝑑 ≻𝜋 𝑑 ′

,

and second, 𝑏 ≻𝜋 𝑐 . 𝜋 ′
𝑖∗ satisfies these criteria by construction, and thus 𝜋 ′

𝑖∗ ∈ Π𝑉𝑖∗ (𝜸 ,𝑈 ′) , as needed,
concluding the proof of Case 1.

Case 2: 𝝅 does not contain a voter 𝑖 who ranks 𝑏 ≻𝜋𝑖 𝑐 .

First, observe that 𝑐 ≻𝜋𝑖 𝑏 for all 𝑖 implies that 𝝅 contains at least one voter in which 𝑏 ≻𝜋𝑖 𝑎. To

see this, first observe that 𝑓 (𝝅 ′) = 𝑏 implies that 𝑏 cannot always be ranked behind 𝑎 in 𝝅 ′
by

weak unanimity; thus there must be a voter 𝑖 ′ such that 𝑏 ≻𝜋 ′
𝑖′
𝑎. Next, observe that swapping 𝑏

and 𝑐 from 𝝅 → 𝝅 ′
cannot change the relative ordering of either of these alternatives with 𝑎, so

it must also be the case that 𝑏 ≻𝜋𝑖′ 𝑎 (i.e., there exists such a voter in 𝝅 ). We let 𝑖 ′ be this voter
throughout this case.

Now, we will construct 𝜸 ,𝑈 ,𝜸 ′
such that three claims are true: Claim (1): sw(𝑐,𝑈 ) > sw(𝑏,𝑈 ) >

sw(𝑎,𝑈 ), Claim (2): 𝝅 ′ ∈ Π𝑉 (𝜸 ,𝑈 ′) , and Claim (3): 𝝅 ∈ Π𝑉 (𝜸 ,𝑈 ) . If these claims hold, then we will

have decreased voters’ public spirit from 𝜸 → 𝜸 ′
, which realizes the transformation from 𝝅 → 𝝅 ′

.

This transformation changed the winner from 𝑎 to 𝑏 —an increase in the social welfare and a

violation of PS-monotonicity.

Construction of 𝜸 ,𝜸 ′
. We let 𝜸 such that 𝛾𝑖 = 0 for all 𝑖 ≠ 𝑖∗, and 𝛾𝑖∗ = 𝜖 for some small

0 < 𝜖 < 1/𝑚4
, and let 𝜸 ′ = 0.

Construction of 𝑈 . First, for 𝑖∗, let their utility for the first-ranked alternative in 𝜋 ′
𝑖∗ be 1/𝑚, and

then, in order of 𝜋𝑖∗ , assign the alternatives utilities descending at intervals of 1/𝑚2
until we reach

𝑏. Then set 𝑢𝑖∗ (𝑏) so that 𝑢𝑖∗ (𝑏) −𝑢𝑖∗ (𝑐) = 𝜖2/𝑛. Then, starting after 𝑐 , continue down 𝜋 ′
𝑖∗ assigning

alternatives decreasing utilities at intervals of 1/𝑚2
. For the remaining voters, we break into cases:
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• If 𝑖 ′ ≠ 𝑖∗, we assign 𝑖 ′’s utilities according to 𝜋 ′
𝑖′ : let 𝑖

′
’s utilities be 1 for 𝑐 and all alternatives 𝑖 ′

ranks ahead of 𝑐 ; 1/2 for 𝑏 and all alternatives 𝑖 ′ ranks between 𝑐 and 𝑏, and 0 for all alternatives
𝑖 ′ ranks after 𝑏 (note that this includes 𝑎, by selection of 𝑖 ′). Give all other voters besides 𝑖∗ and
𝑖 ′ 0 utility for all alternatives.

• If 𝑖 ′ = 𝑖∗, then pick another arbitrary voter 𝑖 ′′ for whom 𝑐 ≻𝜋 ′
𝑖′′

𝑏. We assign 𝑖 ′′’s utilities

according to their ranking 𝜋 ′
𝑖′′ : give 𝑐 and all alternatives ranked ahead of 𝑐 utility 1/𝑚3

, and

give 0 utility to all alternatives they rank after 𝑐 . Give all other voters besides 𝑖∗ and 𝑖 ′′ 0 utility
for all alternatives.

Proofs of Claims (1), (2), and (3).

Claim (1): If 𝑖∗ ≠ 𝑖 ′, then the only voters with any nonzero utilities are 𝑖∗ and 𝑖 ′; by their utilities,

sw(𝑐) − sw(𝑏) = 1/2 − 𝜖2/𝑛 and sw(𝑏) − sw(𝑎) ≥ 1/2 − 1/𝑚 (where the −1/𝑚 is the maximum

possible gap between 𝑢𝑖∗ (𝑎) and 𝑢𝑖∗ (𝑏)). If 𝑖∗ = 𝑖 ′, then the only voters with any nonzero utilities

are 𝑖∗ and 𝑖 ′′; by their utilities, sw(𝑐) − sw(𝑏) = 1/𝑚3 − 𝜖2/𝑛, and sw(𝑏) − sw(𝑎) ≥ 1/𝑚2 − 1/𝑚3
.

Claim (2):We have assigned voters’ utilities in weakly decreasing order according to 𝜋 ′
𝑖 for all 𝑖 , and

𝜸 ′ = 0, meaning that voters’ individual utilities fully determine their rankings: thus, 𝝅 ′ ∈ Π𝑉 (𝜸 ′,𝑈 ) .

Claim (3): The proof of this claim follows the same structure as that of Claim (3) in Case 1, so we

will be slightly more brief here, and invoke parts of that argument when useful. We again use the

notation 𝜋𝑖 ∈ Π𝑉𝑖 (𝜸 ,𝑈 ) to mean a voter 𝑖’s ranking 𝜋𝑖 is consistent with the vector of PS-values

implied by the 𝑖th row of the matrix 𝑉 (𝜸 ,𝑈 ).

First, for all voters 𝑖 ≠ 𝑖∗, by construction of 𝝅 , 𝝅 ′
we have that 𝜋𝑖 = 𝜋 ′

𝑖 . Moreover, 𝛾𝑖 = 𝛾 ′
𝑖 implies

that Π𝑉𝑖 (𝜸 ,𝑈 ) = Π𝑉𝑖 (𝜸 ,𝑈 ′) . By these two equalities, 𝜋 ′
𝑖 ∈ Π𝑉𝑖 (𝜸 ,𝑈 ′) (as shown in Claim (2)) implies

𝜋𝑖 ∈ Π𝑉𝑖 (𝜸 ,𝑈 ) .

Now considering voter 𝑖∗, we want to show that 𝜋𝑖∗ ∈ Π𝑉𝑖∗ (𝜸 ,𝑈 ) . To show this, first fix a pair of

alternatives (𝑑, 𝑑 ′) ≠ (𝑏, 𝑐). By the same type of reasoning as in Case 1, we have that |𝑣𝑖∗ (𝑑,𝜸 ′,𝑈 ) −
𝑣𝑖∗ (𝑑 ′,𝜸 ′,𝑈 ) | ≥ 1/𝑚2 > 2𝜖}, and also that |𝑣𝑖∗ (𝑑,𝜸 ,𝑈 ) − 𝑣𝑖∗ (𝑑,𝜸 ′,𝑈 ) | ≤ 𝜖 and |𝑣𝑖∗ (𝑑 ′,𝜸 ,𝑈 ) −
𝑣𝑖∗ (𝑑 ′,𝜸 ′,𝑈 ) | ≤ 𝜖 , by the fact that all utilities in𝑈 are bounded between 0 and 1. Putting these facts

together, we get that for all such pairs 𝑑,𝑑 ′
,

𝑣𝑖∗ (𝑑,𝜸 ′,𝑈 ) ≥ 𝑣𝑖∗ (𝑑 ′,𝜸 ′,𝑈 ) =⇒ 𝑣𝑖∗ (𝑑,𝜸 ,𝑈 ) ≥ 𝑣𝑖∗ (𝑑 ′,𝜸 ,𝑈 ). (17)

Now, finally considering the pair 𝑏, 𝑐 , we have the following, using that sw(𝑐,𝑈 ) − sw(𝑏,𝑈 ) ≥
1/𝑚4 > 𝜖 , as shown in the proof of Claim (1):

𝑣𝑖∗ (𝑐,𝜸 ,𝑈 ) − 𝑣𝑖∗ (𝑏,𝜸 ,𝑈 ) = (1 − 𝜖) (𝑢𝑖∗ (𝑐) − 𝑢𝑖∗ (𝑏)) + 𝜖 (sw(𝑐,𝑈 )/𝑛 − sw(𝑏,𝑈 )/𝑛)
> −𝜖2/𝑛 + 𝜖 (sw(𝑐,𝑈 ) − sw(𝑏,𝑈 ))/𝑛
≥ −𝜖2/𝑛 + 𝜖2/𝑛
= 0.

We conclude that

𝑣𝑖∗ (𝑏,𝜸 ′,𝑈 ) − 𝑣𝑖∗ (𝑐,𝜸 ′,𝑈 ) > 0. (18)

By Equations (17) and (18), we have that any ranking 𝜋 with the following two properties must be

consistent with Π𝑉𝑖∗ (𝜸 ,𝑈 ′) : First, for all pairs of alternatives (𝑑,𝑑 ′) ≠ (𝑏, 𝑐), 𝑑 ≻𝜋 ′
𝑖∗
𝑑 ′ =⇒ 𝑑 ≻𝜋 𝑑 ′

,

and second, 𝑐 ≻𝜋 𝑏. 𝜋𝑖∗ satisfies these criteria by construction, and thus 𝜋𝑖∗ ∈ Π𝑉𝑖∗ (𝜸 ,𝑈 ) , as needed,
concluding the proof of Case 2.

□
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B.6 Proof of Lemma 4.17
Lemma 4.17. If 𝑓 is monotonic and swap-invariant, then it is Maskin-monotonic.

Proof. Fix a monotonic and swap-invariant voting rule 𝑓 , and fix a profile 𝝅 such that 𝑓 (𝝅) = 𝑎.

Let 𝝅 ′
be an arbitrary other profile such that such that 𝑎 ≻𝜋 ′

𝑖
𝑏 whenever 𝑎 ≻𝜋𝑖 𝑏 for every voter

𝑖 and for all 𝑏 ≠ 𝑎. Now, we will show that we can construct 𝝅 ′
from 𝝅 by promoting 𝑎 and/or

swapping 𝑏 with alternatives other than 𝑎. By monotonicity and swap-invariance, this will preserve

the winner thus it will hold that 𝑓 (𝝅 ′) = 𝑎, thereby proving the Maskin monotonicity of 𝑓 .

Fix an 𝑖 , and consider 𝜋𝑖 , from which we must construct 𝜋 ′
𝑖 . First, let 𝐴1 be the set of all alternatives

ranked ahead of 𝑎 in 𝜋𝑖 but behind 𝑎 in 𝜋𝑖 . Swap the alternatives in𝐴1 with other alternatives ahead

of 𝑎 in 𝜋𝑖 so that all these alternatives are ranked just ahead of 𝑎. These swaps didn’t change the

𝑓 winner by the swap invariance of 𝑓 . Then, swap 𝑎 ahead of all alternatives in 𝐴1–this does not

change the 𝑓 winner by the monotonicity of 𝑓 . Finally, swap alternatives other than 𝑎 to make the

relative ordering of all alternatives ahead of and behind 𝑎, respectively, match their relative ordering

in 𝜋 ′
𝑖 ; by swap invariance of 𝑓 , this again does not change the 𝑓 winner. We can do this procedure

to the rankings if all 𝑖 , and thereby construct 𝝅 ′
from 𝝅 while preserving 𝑎 as the winner. □
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